Symmetry-breaking analysis for the general Helmholtz–Duffing oscillator

作者: Hongjun Cao , Jesús M. Seoane , Miguel A.F. Sanjuán

DOI: 10.1016/J.CHAOS.2006.04.010

关键词:

摘要: Abstract The symmetry breaking phenomenon for a general Helmholtz–Duffing oscillator as function of symmetric parameter in the nonlinear force is investigated. Different values this convert into either Helmholtz or Duffing oscillator. Due to variation parameter, phase space patterns unperturbed will cause huge difference between left-hand homoclinic orbit and right-hand one. In particular, area orbits strictly monotonously decreasing function, while varies only very small range. There exist distinct local supercritical subcritical saddle-node bifurcations at two different centers. existing regions harmonic solutions created by bifurcation curves lead transition amplitude–frequency plane. exists also critical frequency which has effect that value equal value. And, if amplitude coefficient used control it larger than same bifurcation, then global stability system be destroyed lowest cost. Besides frequency, are not unequal, but their effects system’s different. Among them, resulting from negligible, large accomplished quite

参考文章(21)
M. Bikdash, A. Navfeh, B. Balachandran, Melnikov analysis for a ship with a general roll-damping model Nonlinear Dynamics. ,vol. 6, pp. 101- 124 ,(1994) , 10.1007/BF00045435
Stefano Lenci, Giuseppe Rega, Optimal Control of Nonregular Dynamics in a Duffing Oscillator Nonlinear Dynamics. ,vol. 33, pp. 71- 86 ,(2003) , 10.1023/A:1025509014101
Shakti N. Menon, Georg A. Gottwald, Bifurcations in reaction-diffusion systems in chaotic flows. Physical Review E. ,vol. 71, pp. 066201- ,(2005) , 10.1103/PHYSREVE.71.066201
Stefano Lenci, Giuseppe Rega, Global optimal control and system-dependent solutions in the hardening Helmholtz–Duffing oscillator Chaos Solitons & Fractals. ,vol. 21, pp. 1031- 1046 ,(2004) , 10.1016/S0960-0779(03)00387-4
Serge Bruno Yamgoué, Timoléon Crépin Kofané, Chaotic responses of a deformable system under parametric and external excitations Chaos Solitons & Fractals. ,vol. 17, pp. 155- 167 ,(2003) , 10.1016/S0960-0779(02)00477-0
K. Yagasaki, Chaos in a pendulum with feedback control Nonlinear Dynamics. ,vol. 6, pp. 125- 142 ,(1994) , 10.1007/BF00044981
Anastasia Sofroniou, Steven R. Bishop, Breaking the symmetry of the parametrically excited pendulum Chaos, Solitons & Fractals. ,vol. 28, pp. 673- 681 ,(2006) , 10.1016/J.CHAOS.2005.07.014
S.R. Bishop, A. Sofroniou, P. Shi, Symmetry-breaking in the response of the parametrically excited pendulum model Chaos Solitons & Fractals. ,vol. 25, pp. 257- 264 ,(2005) , 10.1016/J.CHAOS.2004.11.005
Jukka Isohätälä, Kirill N. Alekseev, Lauri T. Kurki, Pekka Pietiläinen, Symmetry breaking in a driven and strongly damped pendulum. Physical Review E. ,vol. 71, pp. 066206- 066206 ,(2005) , 10.1103/PHYSREVE.71.066206