The effect of symmetry-breaking on the parameterically excited pendulum

作者: Peipei Zhou , Hongjun Cao

DOI: 10.1016/J.CHAOS.2007.06.073

关键词:

摘要: Abstract The effect of the symmetry-breaking on parameterically excited pendulum including a bias term is investigated. At first, our numerical simulations show that area safe region unexcited (without damping and without forcing) will decrease with increasing term. Due to variation, critical homoclinic bifurcation increase, where transversal intersection occurs between stable unstable manifolds in Poincare map be enlarged. Second, as increases, analysis demonstrates number type attractors map, phase portraits, basins attraction, diagrams produce considerable variation. In particular, stability lose once exceeds value. this case there no longer any steady state existing. These results suggest much attention should paid controlling term, especially when main device applied some practical systems.

参考文章(10)
W. Szemplińska-Stupnicka, E. Tyrkiel, Common Features of the Onset of the Persistent Chaos in Nonlinear Oscillators: A Phenomenological Approach Nonlinear Dynamics. ,vol. 27, pp. 271- 293 ,(2002) , 10.1023/A:1014456416158
HONGJUN CAO, GUANRONG CHEN, GLOBAL AND LOCAL CONTROL OF HOMOCLINIC AND HETEROCLINIC BIFURCATIONS International Journal of Bifurcation and Chaos. ,vol. 15, pp. 2411- 2432 ,(2005) , 10.1142/S0218127405013393
B. Bruhn, B. P. Koch, Homoclinic and Heteroclinic Bifurcations in rf SQUIDs Zeitschrift für Naturforschung A. ,vol. 43, pp. 930- 938 ,(1988) , 10.1515/ZNA-1988-1104
K. Yagasaki, Chaos in a pendulum with feedback control Nonlinear Dynamics. ,vol. 6, pp. 125- 142 ,(1994) , 10.1007/BF00044981
Anastasia Sofroniou, Steven R. Bishop, Breaking the symmetry of the parametrically excited pendulum Chaos, Solitons & Fractals. ,vol. 28, pp. 673- 681 ,(2006) , 10.1016/J.CHAOS.2005.07.014
Hongjun Cao, Jesús M. Seoane, Miguel A.F. Sanjuán, Symmetry-breaking analysis for the general Helmholtz–Duffing oscillator Chaos, Solitons & Fractals. ,vol. 34, pp. 197- 212 ,(2007) , 10.1016/J.CHAOS.2006.04.010
S.R. Bishop, A. Sofroniou, P. Shi, Symmetry-breaking in the response of the parametrically excited pendulum model Chaos Solitons & Fractals. ,vol. 25, pp. 257- 264 ,(2005) , 10.1016/J.CHAOS.2004.11.005
James A. Yorke, Helena E. Nusse, Dynamics: Numerical Explorations ,(1994)
G.X. Li, F.C. Moon, Criteria for chaos of a three-well potential oscillator with homoclinic and heteroclinic orbits Journal of Sound and Vibration. ,vol. 136, pp. 17- 34 ,(1990) , 10.1016/0022-460X(90)90934-R
John Guckenheimer, Philip Holmes, M. Slemrod, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields ,(1983)