On the Double Layer Potential Operator over Polyhedral Domains: Solvability in Weighted Sobolev Spaces and Spline Approximation

作者: J. Elschner

DOI: 10.1007/978-3-663-11577-9_6

关键词:

摘要: Let Γ be the boundary of a simply connected bounded polyhedron Ω, in ℝ3. The harmonic double layer potential operator on is defined by $$ Ku(x): = \frac{1} {{2\pi }}\int_\Gamma {u\left( y \right)\frac{\partial } {{\partial n_y }}\frac{1} {{|x - y|}}do\left( \right)} {\frac{{(x y).\,n_y }} y|^3 }}u\left( \right)do\left( \right),\,x\, \in \,\Gamma $$ (1) where do surface measure and n outward pointing normal vector to Γ.

参考文章(20)
Martin Costabel, Ernst Stephan, Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation Banach Center Publications. ,vol. 15, pp. 175- 251 ,(1985) , 10.4064/-15-1-175-251
J. Kral, W. Wendland, On the Applicability of the Fredholm-Radon Method in Potential Theory and the Panel Method Panel Methods in Fluid Mechanics with Emphasis on Aerodynamics. pp. 120- 136 ,(1988) , 10.1007/978-3-663-13997-3_10
Johannes Elschner, On Spline Approximation for a Class of Non-Compact Integral Equations Mathematische Nachrichten. ,vol. 146, pp. 271- 321 ,(1990) , 10.1002/MANA.19901461703
Wolfgang Wendland, Die Behandlung von Randwertaufgaben imR3 mit Hilfe von Einfach- und Doppelschichtpotentialen Numerische Mathematik. ,vol. 11, pp. 380- 404 ,(1968) , 10.1007/BF02161886
Stephan Rempel, Corner singularity for transmission problems in three dimensions Integral Equations and Operator Theory. ,vol. 12, pp. 835- 854 ,(1989) , 10.1007/BF01196880