Interface and mixed boundary value problems on n-dimensional polyhedral domains

作者: Ludmil Zikatanov , Victor Nistor , Anna L. Mazzucato , Constantin B

DOI:

关键词:

摘要: Let � 2 Z+ be arbitrary. We prove a well-posedness result for mixed boundary value/interface problems of second-order, positive, strongly elliptic operators in weighted Sobolev spaces K �() on bounded, curvilinear polyhedral domain manifold M dimension n. The typical weightthat we consider is the (smoothed) distance to set singular points @. Our model problem Pu := −div(Ar u) = f, , u 0 @D, and D P @�, where function A >0 piece-wise smooth decomposition ¯ ( jj, @ @D @N into subsets corre- sponding, respectively, Dirichlet Neumann condi- tions. If there are no interfaces adjacent faces with Neu- mann conditions, our main gives an isomorphism : �+1

参考文章(65)
B. A Plamenevskiĭ, V. G. Mazʹi︠a︡, Serguei Nazarov, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains : Volume I ,(2000)
Ivo Babuška, Finite element method for domains with corners Computing. ,vol. 6, pp. 264- 273 ,(1970) , 10.1007/BF02238811
Marius Mitrea, Michael Taylor, Potential theory on Lipschitz domains in Riemannian manifolds: $L^p$ Hardy, and Holder space results Communications in Analysis and Geometry. ,vol. 9, pp. 369- 421 ,(2001) , 10.4310/CAG.2001.V9.N2.A6
Victor Nistor, Anna L. Mazzucato, Hengguang Li, ANALYSIS OF THE FINITE ELEMENT METHOD FOR TRANSMISSION/MIXED BOUNDARY VALUE PROBLEMS ON GENERAL POLYGONAL DOMAINS ∗ Electronic Transactions on Numerical Analysis. ,vol. 37, pp. 41- 69 ,(2010)
Richard B. Melrose, Geometric scattering theory Cambridge University Press. ,(1995)
Richard B. Melrose, The Atiyah-Patodi-Singer Index Theorem ,(1993)
Pekka Koskela, Xiao Zhong, Hardy’s inequality and the boundary size Proceedings of the American Mathematical Society. ,vol. 131, pp. 1151- 1158 ,(2002) , 10.1090/S0002-9939-02-06711-4