Iterative polynomial interpolation and data compression

作者: Morten DÆhlen , Michael Floater

DOI: 10.1007/BF02215679

关键词:

摘要: In this paper we look at some iterative interpolation schemes and investigate how they may be used in data compression. particular, use the pointwise polynomial method to decompose discrete into a sequence of difference vectors. By compressing these differences, one can store an approximation within specified tolerance using fraction original storage space (the larger tolerance, smaller fraction).

参考文章(13)
Jerome Alexander, Theory and methods Chemical Catalog. ,(1926)
Charles K. Chui, An introduction to wavelets ,(1992)
M. Dæhlen, T. Lyche, Decomposition of splines Mathematical methods in computer aided geometric design II. pp. 135- 160 ,(1992) , 10.1016/B978-0-12-460510-7.50014-8
Stephane G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L^2(R) Transactions of the American Mathematical Society. ,vol. 315, pp. 69- 87 ,(1989) , 10.1090/S0002-9947-1989-1008470-5
Serge Dubuc, Interpolation through an iterative scheme Journal of Mathematical Analysis and Applications. ,vol. 114, pp. 185- 204 ,(1986) , 10.1016/0022-247X(86)90077-6
T.A. Foley, Interpolation and approximation of 3-D and 4-D scattered data Computers & Mathematics With Applications. ,vol. 13, pp. 711- 740 ,(1987) , 10.1016/0898-1221(87)90043-5
Michael J. D. Powell, Approximation theory and methods ,(1981)
Olivier Rioul, Simple Regularity Criteria for Subdivision Schemes SIAM Journal on Mathematical Analysis. ,vol. 23, pp. 1544- 1576 ,(1992) , 10.1137/0523086
Nira Dyn, David Levin, John A. Gregory, A 4-point interpolatory subdivision scheme for curve design Computer Aided Geometric Design. ,vol. 4, pp. 257- 268 ,(1987) , 10.1016/0167-8396(87)90001-X
Gilles Deslauriers, Serge Dubuc, Symmetric Iterative Interpolation Processes Constructive Approximation. ,vol. 5, pp. 49- 68 ,(1989) , 10.1007/978-1-4899-6886-9_3