Interpolation and approximation of 3-D and 4-D scattered data

作者: T.A. Foley

DOI: 10.1016/0898-1221(87)90043-5

关键词:

摘要: Abstract Given a set of 3-D or 4-D scattered data, methods are presented that yield bivariate trivariate function interpolate approximate the given data. The subroutine package includes Hardy's multiquadric interpolant and multistage with many options available to user, thus several different interpolation approximation can be generated. in effectively used if data is noisy, rapidly varying nonuniformly distributed. computational storage requirements for linear number points, they efficient on large sets.

参考文章(29)
Larry L. Schumaker, Fitting surfaces to scattered data Defense Technical Information Center. ,(1976) , 10.21236/ADA027870
Richard Franke, A Critical Comparison of Some Methods for Interpolation of Scattered Data Monterey, California: Naval Postgraduate School.. ,(1979) , 10.21236/ADA081688
Robert E. Barnhill, Representation and Approximation of Surfaces Mathematical Software#R##N#Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, March 28–30, 1977. pp. 69- 120 ,(1977) , 10.1016/B978-0-12-587260-7.50008-X
Robert E. Barnhill, Sarah E. Stead, Multistage trivariate surfaces Rocky Mountain Journal of Mathematics. ,vol. 14, pp. 103- 118 ,(1984) , 10.1216/RMJ-1984-14-1-103
R.E. Barnhill, F.F. Little, Three- and four-dimensional surfaces Rocky Mountain Journal of Mathematics. ,vol. 14, pp. 77- 102 ,(1984) , 10.1216/RMJ-1984-14-1-77
Peter Alfeld, A trivariate clough-tocher scheme for tetrahedral data Computer Aided Geometric Design. ,vol. 1, pp. 169- 181 ,(1984) , 10.1016/0167-8396(84)90029-3
Thomas A. Foley, Scattered data interpolation and approximation with error bounds Computer Aided Geometric Design. ,vol. 3, pp. 163- 177 ,(1986) , 10.1016/0167-8396(86)90034-8
William J. Gordon, James A. Wixom, Shepard’s method of “metric interpolation” to bivariate and multivariate interpolation Mathematics of Computation. ,vol. 32, pp. 253- 264 ,(1978) , 10.1090/S0025-5718-1978-0458027-6