Finding the shortest path between two points in a simple polygon by applying a rubberband algorithm

作者: Fajie Li , Reinhard Klette

DOI: 10.1007/11949534_28

关键词:

摘要: Let p and q be two points in a simple polygon Π. An open problem computational geometry asks to devise linear-time algorithm for computing shortest path between q, which is contained Π, such that the does not depend on (complicated) triangulation algorithm. This report provides contribution solution of this by applying rubberband The obtained has ${\cal O}$ (nlogn) time complexity (where super-linear only due preprocessing, i.e. calculation critical edges) is, altogether, considerably simpler than It applications 2D pattern recognition, picture analysis, robotics, so forth.

参考文章(12)
Fajie Li, Reinhard Klette, Shortest Paths in a Cuboidal World Lecture Notes in Computer Science. pp. 415- 429 ,(2006) , 10.1007/11774938_33
Joseph S.B. Mitchell, Chapter 15 – Geometric Shortest Paths and Network Optimization Handbook of Computational Geometry. pp. 633- 701 ,(2000) , 10.1016/B978-044482537-7/50016-4
Fajie Li, Reinhard Klette, Analysis of the rubberband algorithm Image and Vision Computing. ,vol. 25, pp. 1588- 1598 ,(2007) , 10.1016/J.IMAVIS.2006.06.021
John Hershberger, A new data structure for shortest path queries in a simple polygon Information Processing Letters. ,vol. 38, pp. 231- 235 ,(1991) , 10.1016/0020-0190(91)90064-O
D. T. Lee, F. P. Preparata, Euclidean shortest paths in the presence of rectilinear barriers Networks. ,vol. 14, pp. 393- 410 ,(1984) , 10.1002/NET.3230140304
Leonidas J. Guibas, John Hershberger, Optimal shortest path queries in a simple polygon Journal of Computer and System Sciences. ,vol. 39, pp. 126- 152 ,(1989) , 10.1016/0022-0000(89)90041-X
Bernard Chazelle, Triangulating a simple polygon in linear time Discrete & Computational Geometry. ,vol. 6, pp. 485- 524 ,(1991) , 10.1007/BF02574703
Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, Robert E. Tarjan, Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons Algorithmica. ,vol. 2, pp. 209- 233 ,(1987) , 10.1007/BF01840360