Three-dimensional reconstruction of individual helical nano-filament structures from atomic force microscopy topographs.

作者: Liisa Lutter , Christopher J. Serpell , Mick F. Tuite , Louise C. Serpell , Wei-Feng Xue

DOI: 10.1515/BMC-2020-0009

关键词:

摘要: Atomic force microscopy, AFM, is a powerful tool that can produce detailed topographical images of individual nano-structures with high signal-to-noise ratio without the need for ensemble averaging. However, application AFM in structural biology has been hampered by tip-sample convolution effect, which distorts nano-structures, particularly those are similar dimensions to cantilever probe tips used AFM. Here we show results feature-dependent and non-uniform distribution image resolution on topographs. We how this effect be utilised studies nano-sized upward convex objects such as spherical or filamentous molecular assemblies deposited flat surface, because it causes 'magnification' Subsequently, enhancement harnessed through contact-point based deconvolution Here, approach demonstrated 3D reconstruction surface envelope helical amyloid filaments cross-particle averaging using contact-deconvoluted Resolving variations macromolecular within inherently heterogeneous populations paramount mechanistic understanding many biological phenomena toxicity prion strains. The presented here will also facilitate use high-resolution integrative analysis single assemblies.

参考文章(33)
Ruben Diaz, William, J. Rice, David L. Stokes, Fourier-Bessel Reconstruction of Helical Assemblies Methods in Enzymology. ,vol. 482, pp. 131- 165 ,(2010) , 10.1016/S0076-6879(10)82005-1
Carsten Sachse, , Single-particle based helical reconstruction—how to make the most of real and Fourier space biophysics 2015, Vol. 2, Pages 219-244. ,vol. 2, pp. 219- 244 ,(2015) , 10.3934/BIOPHY.2015.2.219
S. D. O’Connor, R. C. Gamble, R. K. Eby, J. D. Baldeschwieler, Noise reduction in atomic force microscopy: Resonance contact mode Review of Scientific Instruments. ,vol. 67, pp. 393- 396 ,(1996) , 10.1063/1.1146602
L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy Science. ,vol. 325, pp. 1110- 1114 ,(2009) , 10.1126/SCIENCE.1176210
H -J Butt, M Jaschke, Calculation of thermal noise in atomic force microscopy Nanotechnology. ,vol. 6, pp. 1- 7 ,(1995) , 10.1088/0957-4484/6/1/001
Josep Canet-Ferrer, Eugenio Coronado, Alicia Forment-Aliaga, Elena Pinilla-Cienfuegos, Correction of the tip convolution effects in the imaging of nanostructures studied through scanning force microscopy Nanotechnology. ,vol. 25, pp. 395703- ,(2014) , 10.1088/0957-4484/25/39/395703
Ming Zheng, Anand Jagota, Ellen D. Semke, Bruce A. Diner, Robert S. Mclean, Steve R. Lustig, Raymond E. Richardson, Nancy G. Tassi, DNA-assisted dispersion and separation of carbon nanotubes. Nature Materials. ,vol. 2, pp. 338- 342 ,(2003) , 10.1038/NMAT877
Peter Fechner, Thomas Boudier, Stéphanie Mangenot, Szymon Jaroslawski, James N. Sturgis, Simon Scheuring, Structural Information, Resolution, and Noise in High-Resolution Atomic Force Microscopy Topographs Biophysical Journal. ,vol. 96, pp. 3822- 3831 ,(2009) , 10.1016/J.BPJ.2009.02.011
Shannon E. Hill, Joshua Robinson, Garrett Matthews, Martin Muschol, Amyloid Protofibrils of Lysozyme Nucleate and Grow Via Oligomer Fusion Biophysical Journal. ,vol. 96, pp. 3781- 3790 ,(2009) , 10.1016/J.BPJ.2009.01.044
Robert Nowakowski, Paul Luckham, Peter Winlove, Imaging erythrocytes under physiological conditions by atomic force microscopy. Biochimica et Biophysica Acta. ,vol. 1514, pp. 170- 176 ,(2001) , 10.1016/S0005-2736(01)00365-0