Predictive model for assessing and optimizing solar still performance using artificial neural network under hyper arid environment

作者: Mohamed A. Mattar , Ahmed F. Mashaly , A.A. Alazba , A.M. Al-Awaadh , None

DOI: 10.1016/J.SOLENER.2015.05.013

关键词:

摘要: Abstract A mathematical model to forecast the solar still performance under hyper arid conditions was developed using artificial neural network technique. The expressed by different forms, water productivity (MD), operational recovery ratio (ORR) and thermal efficiency (ηth) requires ten input parameters. parameters included Julian day, ambient air temperature, relative humidity, wind speed, radiation, ultra violet index, temperature of feed brine water, total dissolved solids water. ANN trained, tested validated based on measured data. results showed that coefficient determination ranged from 0.991 0.99 0.94 0.98 for MD, ORR ηth during training testing process, respectively. average values root mean-square error all were 0.04 L/m2/h, 2.60% 3.41% Findings revealed effective accurate in predicting with insignificant errors.

参考文章(34)
Kamal M Sassi, Iqbal M Mujtaba, None, Simulation and Optimization of Full Scale Reverse Osmosis Desalination Plant Computer-aided chemical engineering. ,vol. 28, pp. 895- 900 ,(2010) , 10.1016/S1570-7946(10)28150-6
Mohamed El Khadir, Aspects of Artificial Neural Networks as a Modelling Tool for Industrial Processes. The International Arab Journal of Information Technology. ,vol. 2, pp. 334- 339 ,(2005)
Adnan Sözen, Tayfun Menlik, Sinan Ünvar, Determination of efficiency of flat-plate solar collectors using neural network approach Expert Systems With Applications. ,vol. 35, pp. 1533- 1539 ,(2008) , 10.1016/J.ESWA.2007.08.080
I. Farkas, P. Géczy-Vı́g, Neural network modelling of flat-plate solar collectors Computers and Electronics in Agriculture. ,vol. 40, pp. 87- 102 ,(2003) , 10.1016/S0168-1699(03)00013-9
AE Kabeel, Mofreh H Hamed, ZM Omara, None, Augmentation of the basin type solar still using photovoltaic powered turbulence system Desalination and Water Treatment. ,vol. 48, pp. 182- 190 ,(2012) , 10.1080/19443994.2012.698811
G. Arbat, J. Puig-Bargués, J. Barragán, J. Bonany, F. Ramírez de Cartagena, Monitoring soil water status for micro-irrigation management versus modelling approach Biosystems Engineering. ,vol. 100, pp. 286- 296 ,(2008) , 10.1016/J.BIOSYSTEMSENG.2008.02.008
Soteris A Kalogirou, Sofia Panteliou, Argiris Dentsoras, Artificial neural networks used for the performance prediction of a thermosiphon solar water heater Renewable Energy. ,vol. 18, pp. 87- 99 ,(1999) , 10.1016/S0960-1481(98)00787-3
Soteris A Kalogirou, Constantinos C Neocleous, Christos N Schizas, Artificial neural networks for modelling the starting-up of a solar steam-generator Applied Energy. ,vol. 60, pp. 89- 100 ,(1998) , 10.1016/S0306-2619(98)00019-1
Adnan Sözen, Erol Arcaklioğlu, Mehmet Özkaymak, Turkey’s net energy consumption Applied Energy. ,vol. 81, pp. 209- 221 ,(2005) , 10.1016/J.APENERGY.2004.07.001