Application of empirical mode decomposition (EMD) for automated identification of congestive heart failure using heart rate signals

作者: U. Rajendra Acharya , Hamido Fujita , Vidya K. Sudarshan , Shu Lih Oh , Adam Muhammad

DOI: 10.1007/S00521-016-2612-1

关键词:

摘要: Electrocardiogram is widely used to diagnose the congestive heart failure (CHF). It primary noninvasive diagnostic tool that can guide in management and follow-up of patients with CHF. Heart rate variability (HRV) signals which are nonlinear nature possess hidden signatures various cardiac diseases. Therefore, this paper proposes a methodology, empirical mode decomposition (EMD), for an automated identification classification normal CHF using HRV signals. In work, subjected EMD obtain intrinsic functions (IMFs). From these IMFs, thirteen features such as approximate entropy $$ (E_{\text{ap}}^{x} ) $$(Eapx), sample (E_{\text{s}}^{x} $$(Esx), Tsallis (E_{\text{ts}}^{x} $$(Etsx), fuzzy (E_{\text{f}}^{x} $$(Efx), Kolmogorov Sinai (E_{\text{ks}}^{x} $$(Eksx), modified multiscale (E_{{{\text{mms}}_{y} }}^{x} $$(Emmsyx), permutation (E_{\text{p}}^{x} $$(Epx), Renyi (E_{\text{r}}^{x} $$(Erx), Shannon (E_{\text{sh}}^{x} $$(Eshx), wavelet (E_{\text{w}}^{x} $$(Ewx), signal activity (S_{\text{a}}^{x} $$(Sax), Hjorth mobility (H_{\text{m}}^{x} $$(Hmx), complexity (H_{\text{c}}^{x} $$(Hcx) extracted. Then, different ranking methods rank extracted features, later, probabilistic neural network support vector machine differentiating highly ranked into classes. We have obtained accuracy, sensitivity, specificity 97.64, 97.01, 98.24 %, respectively, identifying The proposed technique able identify person having alarming (alerting) clinicians respond quickly proper treatment action. Thus, method may act valuable increasing survival many patients.

参考文章(105)
Pagani M, Heart rate variability and autonomic diabetic neuropathy. Diabetes Nutrition & Metabolism. ,vol. 13, pp. 341- 346 ,(2000)
Marc K. Lahiri, Prince J. Kannankeril, Jeffrey J. Goldberger, Assessment of autonomic function in cardiovascular disease: physiological basis and prognostic implications. Journal of the American College of Cardiology. ,vol. 51, pp. 1725- 1733 ,(2008) , 10.1016/J.JACC.2008.01.038
Gregg C Fonarow, Wendy Gattis Stough, William T Abraham, Nancy M Albert, Mihai Gheorghiade, Barry H Greenberg, Christopher M O’Connor, Jie Lena Sun, Clyde W Yancy, James B Young, OPTIMIZE-HF Investigators and hospitals, None, Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. Journal of the American College of Cardiology. ,vol. 50, pp. 768- 777 ,(2007) , 10.1016/J.JACC.2007.04.064
Patrick McSharry, Gari D. Clifford, Francisco Azuaje, Advanced Methods And Tools for ECG Data Analysis ,(2006)
Holger Kantz, Thomas Schreiber, Nonlinear time series analysis ,(1997)
Manoranjan Dash, Huan Liu, Feature Selection for Clustering pacific asia conference on knowledge discovery and data mining. pp. 110- 121 ,(2000) , 10.1007/3-540-45571-X_13
M.H. Asyali, Discrimination power of long-term heart rate variability measures international conference of the ieee engineering in medicine and biology society. ,vol. 1, pp. 200- 203 ,(2003) , 10.1109/IEMBS.2003.1279568
Philip D. Wasserman, Advanced methods in neural computing ,(1989)
Tushar P Thakre, Michael L Smith, Loss of lag-response curvilinearity of indices of heart rate variability in congestive heart failure. BMC Cardiovascular Disorders. ,vol. 6, pp. 27- 27 ,(2006) , 10.1186/1471-2261-6-27
Farmanbar Masoud, Naeemaeiaali Hamed, Alrezaamiri Hamid Reza, Golsorkhtabaramiri Mehdi, A HIGH THROUGHPUT CDMA-BASED READER COLLISION AVOIDANCE PROTOCOL FOR RFID NETWORKS (HRCP) Journal of Advances in Computer Research. ,vol. 6, pp. 1- 7 ,(2015)