The molecular steps of citrinin biosynthesis in fungi

作者: Yi He , Russell J. Cox

DOI: 10.1039/C5SC04027B

关键词:

摘要: The individual steps of citrinin 1 biosynthesis in Monascus ruber M7 were determined by a combination targeted gene knockout and heterologous expression Aspergillus oryzae. pathway involves the synthesis an unreduced trimethylated pentaketide 10 non-reducing polyketide synthase (nrPKS) known as CitS. Reductive release yields keto-aldehyde 2 first enzyme-free intermediate. nrPKS appears to be assisted as-yet cryptic hydrolysis step catalysed CitA which was previously wrongly annotated oxidase. CitB is non-heme iron oxidase oxidises 12-methyl alcohol. Subsequent are CitC 12-alcohol aldehyde CitD converts 12-aldehyde carboxylic acid. Final reduction C-3 CitE citrinin. rules out alternatives involving intramolecular rearrangements, fully defines molecular for time corrects previous errors literature. activity links fungal tropolone observation aminated shunt products azaphilone biosynthesis. Production coordinated production CitS + CitA–CitE host A. oryzae, each driven constitutive promoter, achieved high yield.

参考文章(40)
Khomaizon A. K. Pahirulzaman, Katherine Williams, Colin M. Lazarus, A Toolkit for Heterologous Expression of Metabolic Pathways in Aspergillus oryzae Methods in Enzymology. ,vol. 517, pp. 241- 260 ,(2012) , 10.1016/B978-0-12-404634-4.00012-7
Zhongshu Song, Walid Bakeer, James W. Marshall, Ahmed A. Yakasai, Rozida Mohd Khalid, Jerome Collemare, Elizabeth Skellam, Didier Tharreau, Marc-Henri Lebrun, Colin M. Lazarus, Andrew M. Bailey, Thomas J. Simpson, Russell J. Cox, Heterologous expression of the avirulence gene ACE1 from the fungal rice pathogen Magnaporthe oryzae. Chemical Science. ,vol. 6, pp. 4837- 4845 ,(2015) , 10.1039/C4SC03707C
Takeo Shimizu, Hiroshi Kinoshita, Takuya Nihira, Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus. Applied and Environmental Microbiology. ,vol. 73, pp. 5097- 5103 ,(2007) , 10.1128/AEM.01979-06
Jill Barber, Rachel H. Carter, Mary J. Garson, James Staunton, The biosynthesis of citrinin by Penicillium citrinum Journal of the Chemical Society, Perkin Transactions 1. ,vol. 12, pp. 2577- 2583 ,(1981) , 10.1039/P19810002577
Russell J. Cox, Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets Organic and Biomolecular Chemistry. ,vol. 5, pp. 2010- 2026 ,(2007) , 10.1039/B704420H
Ushio Sankawa, Yutaka Ebizuka, Hiroshi Noguchi, Yoshiaki Isikawa, Shoken Kitaghawa, Y. Yamamoto, Tsutomu Kobayashi, Yoichi Iitak, Haruo Seto, Biosynthesis of citrinin in aspergillus terreus Tetrahedron. ,vol. 39, pp. 3583- 3591 ,(1983) , 10.1016/S0040-4020(01)88669-5
Generoso M. Chagas, Annibal P. Campello, Ma. Lúcia W. Klüppel, Mechanism of citrinin-induced dysfunction of mitochondria. I. Effects on respiration, enzyme activities and membrane potential of renal cortical mitochondria. Journal of Applied Toxicology. ,vol. 12, pp. 123- 129 ,(1992) , 10.1002/JAT.2550120209
Lino Colombo, Cesare Gennari, Donatella Potenza, Carlo Scolastico, Fabrizio Aragozzini, Cosetta Merendi, Biosynthesis of citrinin and synthesis of its biogenetic precursors Journal of the Chemical Society, Perkin Transactions 1. ,vol. 12, pp. 2594- 2597 ,(1981) , 10.1039/P19810002594
Takuya Nihira, Takeo Shimizu, Hiroshi Kinoshita, Shinji Ishihara, Kanae Sakai, Shiro Nagai, Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Applied and Environmental Microbiology. ,vol. 71, pp. 3453- 3457 ,(2005) , 10.1128/AEM.71.7.3453-3457.2005
Jill Barber, James Staunton, Protium as a tracer in polyketide biosynthesis: incorporation of 13CH313CO2H into citrinin produced on a medium based on D2O Journal of The Chemical Society, Chemical Communications. pp. 1098- 1099 ,(1979) , 10.1039/C39790001098