Combining Scripted Behavior with Game Tree Search for Stronger, More Robust Game AI

作者: Nicolas A. Barriga , Marius Stanescu , Michael Buro

DOI: 10.1201/9780429055058-27

关键词:

摘要:

参考文章(8)
Alexander Kovarsky, Michael Buro, Heuristic search applied to abstract combat games Lecture Notes in Computer Science. pp. 66- 78 ,(2005) , 10.1007/11424918_9
Levente Kocsis, Csaba Szepesvári, Bandit Based Monte-Carlo Planning Lecture Notes in Computer Science. pp. 282- 293 ,(2006) , 10.1007/11871842_29
Abdallah Saffidine, Michael Buro, David Churchill, Fast heuristic search for RTS game combat scenarios national conference on artificial intelligence. pp. 112- 117 ,(2012)
Ben G. Weber, Arnav Jhala, Michael Mateas, A particle model for state estimation in real-time strategy games national conference on artificial intelligence. pp. 103- 108 ,(2011)
Gabriel Synnaeve, Pierre Bessière, A Bayesian model for plan recognition in RTS games applied to StarCraft national conference on artificial intelligence. pp. 79- 84 ,(2011)
David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, Demis Hassabis, None, Mastering the game of Go with deep neural networks and tree search Nature. ,vol. 529, pp. 484- 489 ,(2016) , 10.1038/NATURE16961
Leif Foged, Ian Horswill, Monte Carlo Tree Search and Related Algorithms for Games A K Peters/CRC Press. pp. 294- 311 ,(2015) , 10.1201/B18373-31
Michael Buro, Nicolas Arturo Barriga, Marius Stanescu, Puppet Search: Enhancing Scripted Behavior by Look-Ahead Search with Applications to Real-Time Strategy Games. artificial intelligence and interactive digital entertainment conference. pp. 9- 15 ,(2015)