Convergence analysis of sectional methods for solving aggregation population balance equations: The fixed pivot technique

作者: Ankik Kumar Giri , Erika Hausenblas

DOI: 10.1016/J.NONRWA.2013.03.002

关键词:

摘要: Abstract In this paper, we introduce the convergence analysis of fixed pivot technique given by S. Kumar and Ramkrishna (1996)  [28] for nonlinear aggregation population balance equations which are substantial interest in many areas science: colloid chemistry, aerosol physics, astrophysics, polymer science, oil recovery dynamics, mathematical biology. particular, investigate five different types uniform non-uniform meshes turns out that is second order convergent on a smooth meshes. Moreover, it yields first locally mesh. Finally, exhibits method does not converge an oscillatory random Mathematical results also demonstrated numerically.

参考文章(36)
Ankik Kumar Giri, Mathematical and numerical analysis for coagulation-fragmentation equations Otto-von-Guericke-Universität Magdeburg. ,(2010) , 10.25673/5085
Willem H Hundsdorfer, Jan G Verwer, WH Hundsdorfer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations ,(2003)
Francis Filbet, Philippe Lauren�ot, Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation Archiv der Mathematik. ,vol. 83, pp. 558- 567 ,(2004) , 10.1007/S00013-004-1060-9
P B Dubovskii, V A Galkin, I W Stewart, Exact solutions for the coagulation-fragmentation equation Journal of Physics A. ,vol. 25, pp. 4737- 4744 ,(1992) , 10.1088/0305-4470/25/18/009
R.C. Everson, D. Eyre, Q.P. Campbell, Spline method for solving continuous batch grinding and similarity equations Computers & Chemical Engineering. ,vol. 21, pp. 1433- 1440 ,(1997) , 10.1016/S0098-1354(97)88492-X
J. M. Ball, J. Carr, THE DISCRETE COAGULATION-FRAGMENTATION EQUATIONS : EXISTENCE, UNIQUENESS, AND DENSITY CONSERVATION Journal of Statistical Physics. ,vol. 61, pp. 203- 234 ,(1990) , 10.1007/BF01013961
Peter Linz, Convergence of a discretization method for integro-differential equations Numerische Mathematik. ,vol. 25, pp. 103- 107 ,(1975) , 10.1007/BF01419532
Francis Filbet, Philippe Laurençot, Numerical Simulation of the Smoluchowski Coagulation Equation SIAM Journal on Scientific Computing. ,vol. 25, pp. 2004- 2028 ,(2004) , 10.1137/S1064827503429132
Junwei Su, Zhaolin Gu, Yun Li, Shiyu Feng, X Yun Xu, None, Solution of population balance equation using quadrature method of moments with an adjustable factor Chemical Engineering Science. ,vol. 62, pp. 5897- 5911 ,(2007) , 10.1016/J.CES.2007.06.016
D. J. McLaughlin, W. Lamb, A. C. McBride, A Semigroup Approach to Fragmentation Models SIAM Journal on Mathematical Analysis. ,vol. 28, pp. 1158- 1172 ,(1997) , 10.1137/S0036141095291701