Phase Structure of Finite Temperature Lattice Gauge Theories

作者: Erhard Seiler

DOI: 10.1007/978-1-4899-6650-6_3

关键词:

摘要: The last few years have seen increasing interest in the study of quantum field theories at nonvanishing temperature or density. To a large extent this comes from desire to use modern particle cosmology, especially attempts understand very early history universe [l,2,3]. so-called inflationary scenario for has even reached pages general news magazines.

参考文章(46)
B. Durhuus, J. Fr�hlich, A connection between ν-dimensional Yang-Mills theory and (ν−1)-dimensional, non-linear σ-models Communications in Mathematical Physics. ,vol. 75, pp. 103- 151 ,(1980) , 10.1007/BF01222514
Barry Simon, Michael Reed, Methods of Modern Mathematical Physics ,(1972)
Larry D. McLerran, Benjamin Svetitsky, A Monte Carlo study of SU(2) Yang-Mills theory at finite temperature Physics Letters B. ,vol. 98, pp. 195- 198 ,(1981) , 10.1016/0370-2693(81)90986-2
Nathan Weiss, Wilson line in finite-temperature gauge theories Physical Review D. ,vol. 25, pp. 2667- 2672 ,(1982) , 10.1103/PHYSREVD.25.2667
Frithjof Karsch, SU(N) gauge theory couplings on asymmetric lattices Nuclear Physics. ,vol. 205, pp. 285- 300 ,(1982) , 10.1016/0550-3213(82)90390-X
J. Polonyi, K. Szlachanyi, Phase transition from strong-coupling expansion Physics Letters B. ,vol. 110, pp. 395- 398 ,(1982) , 10.1016/0370-2693(82)91280-1
C.B. Lang, C. Rebbi, M. Virasoro, The phase structure of a non-abelian gauge Higgs field system Physics Letters B. ,vol. 104, pp. 294- 300 ,(1981) , 10.1016/0370-2693(81)90129-5