Study on Acoustic Field with Fractal Boundary Using Cellular Automata

作者: Toshihiko Komatsuzaki , Yoshio Iwata

DOI: 10.1007/978-3-540-79992-4_36

关键词:

摘要: In the present study, characteristics of acoustic field in an enclosure bounded by fractal walls are investigated using Cellular Automata (CA). CA is a discrete system which consists finite state variables arranged on uniform grid. The dynamics expressed temporary updating states cells according to local interaction rules, defined among cell and its neighbors. this paper, effect shaped boundary structure reverberation sound absorption for two dimensional wave propagation model described CA. Local rules provided construction patterns as well representation phenomena. It known numerical simulations that damping enhancement also frequency-selective absorbing behavior seen specific stage numbers.

参考文章(11)
Bastien Chopard, Michel Droz, Cellular automata modeling of physical systems ,(1999)
Toshihiko Komatsuzaki, Yoshio Iwata, Modeling of Sound Absorption by Porous Materials Using Cellular Automata Lecture Notes in Computer Science. pp. 357- 366 ,(2006) , 10.1007/11861201_42
B. Sapoval, O. Haeberlé, S. Russ, Acoustical properties of irregular and fractal cavities Journal of the Acoustical Society of America. ,vol. 102, pp. 2014- 2019 ,(1997) , 10.1121/1.419653
Yasushi Sudo, Victor W. Sparrow, Sound propagation simulations using lattice gas methods AIAA Journal. ,vol. 33, pp. 1582- 1589 ,(1995) , 10.2514/3.12696
Soshu Kirihara, Mitsuo Wada Takeda, Kazuaki Sakoda, Katsuya Honda, Yoshinari Miyamoto, Strong localization of microwave in photonic fractals with Menger-sponge structure Journal of The European Ceramic Society. ,vol. 26, pp. 1861- 1864 ,(2006) , 10.1016/J.JEURCERAMSOC.2005.09.014
Vincent Gibiat, Ana Barjau, Kaelig Castor, Etienne Bertaud du Chazaud, Acoustical propagation in a prefractal waveguide Physical Review E. ,vol. 67, pp. 066609- ,(2003) , 10.1103/PHYSREVE.67.066609
Yutaka Hobiki, Kousuke Yakubo, Tsuneyoshi Nakayama, Spectral characteristics in resonators with fractal boundaries Physical Review E. ,vol. 54, pp. 1997- 2004 ,(1996) , 10.1103/PHYSREVE.54.1997
S. Félix, M. Asch, M. Filoche, B. Sapoval, Localization and increased damping in irregular acoustic cavities Journal of Sound and Vibration. ,vol. 299, pp. 965- 976 ,(2007) , 10.1016/J.JSV.2006.07.036
Gary D. Doolen, Shiyi Chen, Y. C. Lee, Hudong Chen, Simple Lattice Gas Models for Waves Complex Systems. ,vol. 2, ,(1988)
T. Gobron, B. Sapoval, Vibrations of strongly irregular or fractal resonators Physical Review A. ,vol. 47, pp. 3013- 3024 ,(1993)