Anomalous transport of magnetized electrons interacting with EC waves

作者: C Tsironis , L Vlahos

DOI: 10.1088/0741-3335/47/1/008

关键词:

摘要: We consider the nonlinear interaction of magnetized electrons with an oblique narrow-band electromagnetic wave-packet. The is analysed over and near local threshold to chaos. statistical character forcing that controls trajectories particles also studied. focus our analysis on issues related energy spatial diffusion across magnetic field by following evolution ensemble mean squares (γ − γ0)2 (r⊥−r⊥0)2 for various values wave amplitude angle propagation. study, in particular, waves having strong moderate amplitudes, transition chaos, where dynamics complex a mixture periodic stochastic orbits coexist. electron diffusions real spaces are found obey simple power laws time, scaling exponents indicative sub-diffusion. This direct consequence effect resonant phase-space islands particle motion.

参考文章(37)
A. Fukuyama, H. Momota, R. Itatani, T. Takizuka, Stochastic acceleration by an electrostatic wave near ion cyclotron harmonics Physical Review Letters. ,vol. 38, pp. 701- 704 ,(1977) , 10.1103/PHYSREVLETT.38.701
G M Zaslavskiĭ, B V Chirikov, STOCHASTIC INSTABILITY OF NON-LINEAR OSCILLATIONS Soviet Physics Uspekhi. ,vol. 14, pp. 549- 568 ,(1972) , 10.1070/PU1972V014N05ABEH004669
Chronis Polymilis, Kyriakos Hizanidis, Transition to stochasticity in the relativistic and the nonrelativistic versions of a dynamical system. Physical Review E. ,vol. 47, pp. 4381- 4398 ,(1993) , 10.1103/PHYSREVE.47.4381
Daniela Farina, Roberto Pozzoli, Massimiliano Romé, Quasilinear stochastic electron energy diffusion driven by an intense cyclotron wave in oblique propagation Physics of Plasmas. ,vol. 1, pp. 1871- 1876 ,(1994) , 10.1063/1.870642
G. M. Zaslavsky, Renormalization group theory of anomalous transport in systems with Hamiltonian chaos Chaos: An Interdisciplinary Journal of Nonlinear Science. ,vol. 4, pp. 25- 33 ,(1994) , 10.1063/1.166054
B. A. Carreras, V. E. Lynch, G. M. Zaslavsky, Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model Physics of Plasmas. ,vol. 8, pp. 5096- 5103 ,(2001) , 10.1063/1.1416180
Gary R. Smith, Allan N. Kaufman, STOCHASTIC ACCELERATION BY A SINGLE WAVE IN A MAGNETIC FIELD Physical Review Letters. ,vol. 34, pp. 1613- 1616 ,(1975) , 10.1103/PHYSREVLETT.34.1613
A.G. Kornienko, M.Y. Natenzon, R.Z. Sagdeev, G.M. Zaslavsky, When does the quasilinear theory work Physics Letters A. ,vol. 158, pp. 398- 406 ,(1991) , 10.1016/0375-9601(91)90681-W