Hochschild and cyclic homology of quantum groups

作者: Ping Feng , Boris Tsygan

DOI: 10.1007/BF02099132

关键词:

摘要: For an arbitrary complex linear semisimple Lie groupG, we consider Hopf algebras of the deformations formal and algebraic functions onG. The Hochschild cyclic homology these are computed when value deformation parameter is generic.

参考文章(41)
B. L. Feigin, B. L. Tsygan, Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras K-Theory, Arithmetic and Geometry. pp. 210- 239 ,(1987) , 10.1007/BFB0078369
B L Tsygan, L Feigin Boris, Riemann-Roch theorem and Lie algebra cohomology. I. Rendiconti Del Circolo Matematico Di Palermo. ,vol. 2, pp. 15- 52 ,(1989)
Jean-Luc Brylinski, Some examples of hochschild and cyclic homology Lecture Notes in Mathematics. pp. 33- 72 ,(1987) , 10.1007/BFB0079232
B. L. Feigin, B. L. Tsygan, Additive K-theory K-Theory, Arithmetic and Geometry. pp. 67- 209 ,(1987) , 10.1007/BFB0078368
Jiang-Hua Lu, Alan Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions Journal of Differential Geometry. ,vol. 31, pp. 501- 526 ,(1990) , 10.4310/JDG/1214444324
Jean-Luc Brylinski, A differential complex for Poisson manifolds Journal of Differential Geometry. ,vol. 28, pp. 93- 114 ,(1988) , 10.4310/JDG/1214442161
Thomas G. Goodwillie, Cyclic homology, derivations, and the free loopspace☆ Topology. ,vol. 24, pp. 187- 215 ,(1985) , 10.1016/0040-9383(85)90055-2
A. N. Kirillov, N. Reshetikhin, $q$-Weyl group and a multiplicative formula for universal $R$-matrices Communications in Mathematical Physics. ,vol. 134, pp. 421- 431 ,(1990) , 10.1007/BF02097710
Michael A. Semenov-Tian-Shansky, Dressing transformations and Poisson group actions Publications of the Research Institute for Mathematical Sciences. ,vol. 21, pp. 1237- 1260 ,(1985) , 10.2977/PRIMS/1195178514