Structure and evolution of quenched Ising clusters

作者: Gary S. Grest , David J. Srolovitz

DOI: 10.1103/PHYSREVB.30.5150

关键词:

摘要: The properties of domains generated following a quench from very high temperatures ($T\ensuremath{\gg}{T}_{c}$) to low are studied for an Ising model evolving under conserved or nonconserved dynamics. Before the clusters satisfy percolation statistics, since $T$ is too large interactions be relevant. However, after temperatures, we observe that largest still percolationlike distances in they described by same Hausdorff dimension as clusters. For short compact. At intermediate distances, appear more fractal than We interpret this regime crossover between constant density at and low-density not new type fractal.

参考文章(44)
J W Essam, REVIEW ARTICLE: Percolation theory Reports on Progress in Physics. ,vol. 43, pp. 833- 912 ,(1980) , 10.1088/0034-4885/43/7/001
K. Binder, D. Stauffer, Monte Carlo study of the surface area of liquid droplets Journal of Statistical Physics. ,vol. 6, pp. 49- 59 ,(1972) , 10.1007/BF01060201
E. Stoll, K. Binder, T. Schneider, Evidence for Fisher's Droplet Model in Simulated Two-Dimensional Cluster Distributions Physical Review B. ,vol. 6, pp. 2777- 2780 ,(1972) , 10.1103/PHYSREVB.6.2777
H. Müller-Krumbhaar, The droplet model in three dimensions: Monte Carlo calculation results Physics Letters A. ,vol. 48, pp. 459- 460 ,(1974) , 10.1016/0375-9601(74)90623-9
S W Haan, R Zwanzig, Series expansions in a continuum percolation problem Journal of Physics A. ,vol. 10, pp. 1547- 1555 ,(1977) , 10.1088/0305-4470/10/9/013
Antonio Coniglio, H. Eugene Stanley, W. Klein, Site-Bond Correlated-Percolation Problem: A Statistical Mechanical Model of Polymer Gelation Physical Review Letters. ,vol. 42, pp. 518- 522 ,(1979) , 10.1103/PHYSREVLETT.42.518
A. Coniglio, H. E. Stanley, W. Klein, Solvent effects on polymer gels: A statistical-mechanical model Physical Review B. ,vol. 25, pp. 6805- 6821 ,(1982) , 10.1103/PHYSREVB.25.6805