Quadratic ρ-functional inequalities in non-Archimedean normed spaces

作者: C. Park

DOI: 10.3103/S1068362315040044

关键词:

摘要: The paper is devoted to the solution of two quadratic ρ-functional inequalities and Hyers-Ulam stability these inequalities. Using direct method, we prove in non-Archimedean Banach spaces. equations associated with also established

参考文章(19)
Janusz Brzdȩk, Hyperstability of the Cauchy equation on restricted domains Acta Mathematica Hungarica. ,vol. 141, pp. 58- 67 ,(2013) , 10.1007/S10474-013-0302-3
Donald H. Hyers, George Isac, Themistocles M. Rassias, Stability of functional equations in several variables ,(1998)
Jürg Rätz, On inequalities associated with the Jordan-von Neumann functional equation Aequationes Mathematicae. ,vol. 66, pp. 191- 200 ,(2003) , 10.1007/S00010-003-2684-8
Themistocles M. Rassias, On the stability of the linear mapping in Banach spaces Proceedings of the American Mathematical Society. ,vol. 72, pp. 297- 300 ,(1978) , 10.1090/S0002-9939-1978-0507327-1
D. H. Hyers, On the Stability of the Linear Functional Equation Proceedings of the National Academy of Sciences of the United States of America. ,vol. 27, pp. 222- 224 ,(1941) , 10.1073/PNAS.27.4.222
Fulvia Skof, Proprieta’ locali e approssimazione di operatori Rendiconti Del Seminario Matematico E Fisico Di Milano. ,vol. 53, pp. 113- 129 ,(1983) , 10.1007/BF02924890
Mohammad Sal Moslehian, Ghadir Sadeghi, A Mazur–Ulam theorem in non-Archimedean normed spaces Nonlinear Analysis: Theory, Methods & Applications. ,vol. 69, pp. 3405- 3408 ,(2008) , 10.1016/J.NA.2007.09.023
Tosio AOKI, On the Stability of the linear Transformation in Banach Spaces. Journal of The Mathematical Society of Japan. ,vol. 2, pp. 64- 66 ,(1950) , 10.2969/JMSJ/00210064