Hyperstability of the Cauchy equation on restricted domains

作者: Janusz Brzdȩk

DOI: 10.1007/S10474-013-0302-3

关键词:

摘要: We show that a very classical result, proved by T. Aoki, Z. Gajda and Th. M. Rassias concerning the Hyers–Ulam stability of Cauchy equation f(x+y)=f(x)+f(y), can be significantly improved. also provide some immediate applications it (among others for cocycle equation, which is useful in characterizations information measures). In particular, we give solution to problem was formulated more than 20 years ago concerned optimality estimations. The proof result based on fixed point theorem.

参考文章(40)
B. Jessen, J. Karpf, A. Thorup, Some Functional Equations in Groups and Rings. Mathematica Scandinavica. ,vol. 22, pp. 257- 265 ,(1968) , 10.7146/MATH.SCAND.A-10889
István Fenyö, Gian Luigi Forti, On the inhomogeneous Cauchy functional equation. Stochastica: revista de matemática pura y aplicada. ,vol. 5, pp. 71- 77 ,(1981)
Bruce Ebanks, Prasanna Sahoo, Wolfgang Sander, Characterizations of information measures ,(1998)
Prasanna K. Sahoo, Palaniappan Kannappan, Introduction to Functional Equations ,(2017)
D. G. Bourgin, continuous function rings Duke Mathematical Journal. ,vol. 16, pp. 385- 397 ,(1949) , 10.1215/S0012-7094-49-01639-7
Tae Soo Kim, Soon Mo Jung, A fixed point approach to the stability of the cubic functional equation Boletin De La Sociedad Matematica Mexicana. ,vol. 12, pp. 51- 57 ,(2006)
Stanislaw M. Ulam, Problems in modern mathematics ,(1964)