Genetic network identification using convex

作者: M. Zavlanos , S. Boyd

DOI:

关键词:

摘要: Gene regulatory networks capture interactions between genes and other cell substances, resulting in various models for the fundamental biological process of transcription translation. The expression levels are typically measured as mRNA concentration micro-array experiments. In a so-called genetic perturbation experiment, small perturbations applied to equilibrium states changes activity measured. One most important problems systems biology is use these data identify interaction pattern network, especially large scale network. authors develop novel algorithm identifying smallest network that explains experimental data. By construction, our identification able incorporate respect priori knowledge known about structure. A qualitative, encoding whether one gene affects another or not, effect positive negative. method based on convex programming relaxation combinatorially hard problem L0 minimisation. apply proposed subnetwork SOS pathway Escherichia coli, segmentation polarity Drosophila melanogaster, an artificial measuring performance method.

参考文章(25)
Yuhong Guo, Dale Schuurmans, Learning gene regulatory networks via globally regularized risk minimization research in computational molecular biology. pp. 83- 95 ,(2007) , 10.1007/978-3-540-74960-8_7
Alan J. Hoffman, S. Thomas McCormick, A Fast Algorithm that makes Matrices Optimally Sparse Progress in Combinatorial Optimization. pp. 185- 196 ,(1982) , 10.1016/B978-0-12-566780-7.50017-9
Florian Geier, Jens Timmer, Christian Fleck, Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge BMC Systems Biology. ,vol. 1, pp. 11- 11 ,(2007) , 10.1186/1752-0509-1-11
J. Tegner, M. K. S. Yeung, J. Hasty, J. J. Collins, Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling Proceedings of the National Academy of Sciences of the United States of America. ,vol. 100, pp. 5944- 5949 ,(2003) , 10.1073/PNAS.0933416100
C. Cosentino, F. Montefusco, F. Amato, M. Bansal, W. Curatola, D. di Bernardo, Linear matrix inequalities approach to reconstruction of biological networks. Iet Systems Biology. ,vol. 1, pp. 164- 173 ,(2007) , 10.1049/IET-SYB:20060054
Michael Andrec, Boris N. Kholodenko, Ronald M. Levy, Eduardo Sontag, Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy. Journal of Theoretical Biology. ,vol. 232, pp. 427- 441 ,(2005) , 10.1016/J.JTBI.2004.08.022
Jeremiah J Faith, Boris Hayete, Joshua T Thaden, Ilaria Mogno, Jamey Wierzbowski, Guillaume Cottarel, Simon Kasif, James J Collins, Timothy S Gardner, Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLOS Biology. ,vol. 5, pp. 0- 0 ,(2007) , 10.1371/JOURNAL.PBIO.0050008
Timothy S Gardner, Diego Di Bernardo, David Lorenz, James J Collins, INFERRING GENETIC NETWORKS AND IDENTIFYING COMPOUND MODE OF ACTION VIA EXPRESSION PROFILING Science. ,vol. 301, pp. 102- 105 ,(2003) , 10.1126/SCIENCE.1081900
Shelley L. Lusetti, Oleg N. Voloshin, Ross B. Inman, R. Daniel Camerini-Otero, Michael M. Cox, The DinI Protein Stabilizes RecA Protein Filaments Journal of Biological Chemistry. ,vol. 279, pp. 30037- 30046 ,(2004) , 10.1074/JBC.M403064200