Patterns in Square Arrays of Coupled Cells

作者: David Gillis , Martin Golubitsky

DOI: 10.1006/JMAA.1997.5347

关键词:

摘要: In recent years it has been observed that reaction]diffusion equations Ž . with Neumann boundary conditions as well other classes of PDEs possess more symmetry than which may be expected, and these ‘‘hidden’’ symmetries affect the generic types bifurcation occur w x see Golubitsky et al. 6 , Field 5 Armbruster Dangelmayr 1 Crawford 2 Gomes Stewart 8, 9 others addition, equilibria highly developed patterns exist for equaw tions might otherwise expected. Epstein 4 show also discretizations on an interval. particular, such systems have well-defined patterns, considered a discrete analog Turing patterns. this paper, we use idea similar to one in same phenomena occurs square satisfying conditions. Such lead n = arrays identically coupled cells. By embedding original array into new 2n array, can embed condition discretization periodic increase group from

参考文章(9)
J. D. Crawford, M. Golubitsky, M. G. M. Gomes, E. Knobloch, I. N. Stewart, Boundary conditions as symmetry constraints Lecture Notes in Mathematics. pp. 63- 79 ,(1991) , 10.1007/BFB0085426
Gabriela Gomes, Ian Stewart, Hopf Bifurcations on Generalized Rectangles with Neumann Boundary Conditions Springer Netherlands. pp. 139- 158 ,(1994) , 10.1007/978-94-011-0956-7_13
M. Golubitsky, D. Schaeffer, J. Marsden, Bifurcation problems with hidden symmetries Boston : Pitman Advanced Publishing Program. ,(1984)
Martin Golubitsky, Ian Stewart, David G. Schaeffer, Singularities and groups in bifurcation theory Springer Science+Business Media. ,(1985) , 10.1007/978-1-4612-4574-2
M. Field, M. Golubitsky, I. Stewart, Bifurcations on hemispheres Journal of Nonlinear Science. ,vol. 1, pp. 201- 223 ,(1991) , 10.1007/BF01209066
M G M Gomes, I N Stewart, Steady PDEs on generalized rectangles: a change of genericity in mode interactions Nonlinearity. ,vol. 7, pp. 253- 272 ,(1994) , 10.1088/0951-7715/7/1/012
Irving R. Epstein, Martin Golubitsky, Symmetric patterns in linear arrays of coupled cells Chaos: An Interdisciplinary Journal of Nonlinear Science. ,vol. 3, pp. 1- 5 ,(1993) , 10.1063/1.165974
Benoit Dionne, Martin Golubitsky, Planforms in two and three dimensions Zeitschrift für Angewandte Mathematik und Physik. ,vol. 43, pp. 36- 62 ,(1992) , 10.1007/BF00944740
D. Armbruster, G. Dangelmayr, Coupled stationary bifurcations in non-flux boundary value problems Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 101, pp. 167- 192 ,(1987) , 10.1017/S0305004100066500