Bernoulli convolutions and an intermediate value theorem for entropies of K -partitions

作者: Elon Lindenstrauss , Yuval Peres , Wilhelm Schlag

DOI: 10.1007/BF02868480

关键词:

摘要: We establish a strong regularity property for the distributions of random sums Σ±λn, known as “infinite Bernoulli convolutions”: For a.e. λ ∃ (1/2, 1) and any fixed l, conditional distribution (wn+1...,wn+l) given sum Σn=0∞wnλn, tends to uniform on {±1}l asn → ∞. More precise results, where l grows linearly inn, extensions other are also obtained. As corollary, we show that measure-preserving system entropyh hasK-partitions prescribed entropy in [0,h]. This answers question Rokhlin Sinai from 1960’s, case systems.

参考文章(21)
M. Pathiaux-Delefosse, A. Decomps-Guilloux, J. P. Schreiber, M. J. Bertin, M. Grandet-Hugot, Nick Lord, Pisot and Salem Numbers ,(1993)
Yuval Peres, Wilhelm Schlag, Boris Solomyak, Sixty Years of Bernoulli Convolutions Fractal Geometry and Stochastics II. pp. 39- 65 ,(2000) , 10.1007/978-3-0348-8380-1_2
Yuval Peres, Boris Solomyak, Self-similar measures and intersections of Cantor sets Transactions of the American Mathematical Society. ,vol. 350, pp. 4065- 4087 ,(1998) , 10.1090/S0002-9947-98-02292-2
Yuval Peres, Boris Solomyak, Absolute Continuity of Bernoulli Convolutions, A Simple Proof Mathematical Research Letters. ,vol. 3, pp. 231- 239 ,(1996) , 10.4310/MRL.1996.V3.N2.A8
J. C. Alexander, J. A. Yorke, Fat baker's transformations Ergodic Theory and Dynamical Systems. ,vol. 4, pp. 1- 23 ,(1984) , 10.1017/S0143385700002236
V A Rokhlin, LECTURES ON THE ENTROPY THEORY OF MEASURE-PRESERVING TRANSFORMATIONS Russian Mathematical Surveys. ,vol. 22, pp. 1- 52 ,(1967) , 10.1070/RM1967V022N05ABEH001224
A M Vershik, Dynamic theory of growth in groups: Entropy, boundaries, examples Russian Mathematical Surveys. ,vol. 55, pp. 667- 733 ,(2000) , 10.1070/RM2000V055N04ABEH000314
Wilhelm Schlag, Yuval Peres, Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions Duke Mathematical Journal. ,vol. 102, pp. 193- 251 ,(2000) , 10.1215/S0012-7094-00-10222-0