Mining Non-Derivable Association Rules.

作者: Bart Goethals , Juho Muhonen , Hannu Toivonen

DOI:

关键词:

摘要:

参考文章(13)
Yves Bastide, Nicolas Pasquier, Rafik Taouil, Gerd Stumme, Lotfi Lakhal, Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets Lecture Notes in Computer Science. ,vol. 1861, pp. 972- 986 ,(2000) , 10.1007/3-540-44957-4_65
Nicolas Pasquier, Yves Bastide, Rafik Taouil, Lotfi Lakhal, Discovering Frequent Closed Itemsets for Association Rules international conference on database theory. ,vol. 1540, pp. 398- 416 ,(1999) , 10.1007/3-540-49257-7_25
Bart Goethals, Jan Van den Bussche, On Supporting Interactive Association Rule Mining data warehousing and knowledge discovery. pp. 307- 316 ,(2000) , 10.1007/3-540-44466-1_31
Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen, A. Inkeri Verkamo, Finding interesting rules from large sets of discovered association rules conference on information and knowledge management. pp. 401- 407 ,(1994) , 10.1145/191246.191314
Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, Alex Pang, Exploratory mining and pruning optimizations of constrained associations rules Proceedings of the 1998 ACM SIGMOD international conference on Management of data - SIGMOD '98. ,vol. 27, pp. 13- 24 ,(1998) , 10.1145/276304.276307
Mohammed J. Zaki, Generating non-redundant association rules knowledge discovery and data mining. pp. 34- 43 ,(2000) , 10.1145/347090.347101
Jean-François Boulicaut, Artur Bykowski, Christophe Rigotti, Approximation of Frequency Queris by Means of Free-Sets european conference on principles of data mining and knowledge discovery. pp. 75- 85 ,(2000) , 10.1007/3-540-45372-5_8
Heikki Mannila, Dmitry Pavlov, Padhraic Smyth, Prediction with local patterns using cross-entropy knowledge discovery and data mining. pp. 357- 361 ,(1999) , 10.1145/312129.312281
J. Galambos, E. Xekelaki, G. Simonelli, Bonferroni-type inequalities with applications ,(1996)
Toon Calders, Bart Goethals, Mining All Non-derivable Frequent Itemsets european conference on principles of data mining and knowledge discovery. pp. 74- 85 ,(2002) , 10.1007/3-540-45681-3_7