Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets

作者: Yves Bastide , Nicolas Pasquier , Rafik Taouil , Gerd Stumme , Lotfi Lakhal

DOI: 10.1007/3-540-44957-4_65

关键词:

摘要: The problem of the relevance and usefulness extracted association rules is primary importance because, in majority cases, real-life databases lead to several thousands with high confidence among which are many redundancies. Using closure Galois connection, we define two new bases for union a generating set all valid support confidence. These characterized using frequent closed itemsets their generators; they consist nonredundant exact approximate having minimal antecedents maximal consequents, i.e. most relevant rules. Algorithms extracting these presented results experiments carried out on show that proposed useful, generation not time consuming.

参考文章(26)
William Ward Armstrong, Dependency Structures of Data Base Relationships. ifip congress. pp. 580- 583 ,(1974)
Michael Luxenburger, Implications partielles dans un contexte Mathématiques, informatique et sciences humaines. ,vol. 113, pp. 35- 55 ,(1991)
V. Duquenne, J. L. Guigues, Familles minimales d'implications informatives résultant d'un tableau de données binaires Mathématiques et Sciences Humaines. ,vol. 95, pp. 5- 18 ,(1986)
Yves Bastide, Nicolas Pasquier, Rafik Taouil, Lotfi Lakhal, Closed Set Based Discovery of Small Covers for Association Rules. Proc. 15èmes Journées Bases de Données Avancées, BDA. pp. 361- 381 ,(1999)
Bernhard Ganter, Rudolf Wille, C. Franzke, Formal Concept Analysis: Mathematical Foundations ,(1998)
Ramakrishnan Srikant, Rakesh Agrawal, Fast Algorithms for Mining Association Rules in Large Databases very large data bases. pp. 487- 499 ,(1994)
Craig Silverstein, Sergey Brin, Rajeev Motwani, Beyond Market Baskets: Generalizing Association Rules to Dependence Rules Data Mining and Knowledge Discovery. ,vol. 2, pp. 39- 68 ,(1998) , 10.1023/A:1009713703947
Ramakrishnan Srikant, Rakesh Agrawal, Mining Generalized Association Rules very large data bases. pp. 407- 419 ,(1995)
Ramakrishnan Srikant, Quoc Vu, Rakesh Agrawal, Mining association rules with item constraints knowledge discovery and data mining. pp. 67- 73 ,(1997)
David Heckerman, Bayesian networks for knowledge discovery knowledge discovery and data mining. pp. 273- 305 ,(1996)