Gbest-Artificial Bee Colony Algorithm to Solve Load Flow Problem

作者: N. K. Garg , Shimpi Singh Jadon , Harish Sharma , D. K. Palwalia

DOI: 10.1007/978-81-322-1768-8_47

关键词:

摘要: Load flow problem has a great significance to analyze the power system network due its roll in planning and operation of network. Generally, Newton–Raphson (NR) method is used load problems efficiency accuracy. But, NR some inherent drawbacks like in-efficient for highly loaded network, assumption are required initial values abnormal operating conditions. To overcome existing method, recently developed swarm intelligence based algorithm, namely Gbest guided Artificial Bee Colony algorithm (GABC) applied solve five bus The reported results GABC compared basic ABC which show that accuracy unknown parameters such as voltage, angle produced by competitive method.

参考文章(25)
John J. Grainger, Gary W. Chang, William D. Stevenson, Power System Analysis ,(1994)
Hyung-Chul Kim, Nader Samann, Dong-Geun Shin, Byeong-Hun Ko, Gil-Soo Jang, Jun-Min Cha, A New Concept of Power Flow Analysis Journal of Electrical Engineering & Technology. ,vol. 2, pp. 312- 319 ,(2007) , 10.5370/JEET.2007.2.3.312
Bahriye Akay, Dervis Karaboga, A modified Artificial Bee Colony algorithm for real-parameter optimization Information Sciences. ,vol. 192, pp. 120- 142 ,(2012) , 10.1016/J.INS.2010.07.015
Petru Dan Cristian, Constantin Barbulescu, Attila Simo, Stefan Kilyeni, Florin Solomonesc, Load flow computation Particle Swarm Optimization algorithm international universities power engineering conference. pp. 1- 6 ,(2012) , 10.1109/UPEC.2012.6398606
K.P. Wong, A. Li, M.Y. Law, Development of constrained-genetic-algorithm load-flow method IEE Proceedings - Generation, Transmission and Distribution. ,vol. 144, pp. 91- 99 ,(1997) , 10.1049/IP-GTD:19970847
Guopu Zhu, Sam Kwong, Gbest-guided artificial bee colony algorithm for numerical function optimization Applied Mathematics and Computation. ,vol. 217, pp. 3166- 3173 ,(2010) , 10.1016/J.AMC.2010.08.049
Konrad Diwold, Andrej Aderhold, Alexander Scheidler, Martin Middendorf, Performance evaluation of artificial bee colony optimization and new selection schemes Memetic Computing. ,vol. 3, pp. 149- 162 ,(2011) , 10.1007/S12293-011-0065-8
M.A. Abido, Optimal power flow using particle swarm optimization International Journal of Electrical Power & Energy Systems. ,vol. 24, pp. 563- 571 ,(2002) , 10.1016/S0142-0615(01)00067-9
Mohammed El-Abd, Performance assessment of foraging algorithms vs. evolutionary algorithms Information Sciences. ,vol. 182, pp. 243- 263 ,(2012) , 10.1016/J.INS.2011.09.005
Camila P. Salomon, Germano Lambert-Torres, Helga G. Martins, Claudio Ferreira, Claudio I. A. Costa, Load flow computation via Particle Swarm Optimization ieee international conference on industry applications. pp. 1- 6 ,(2010) , 10.1109/INDUSCON.2010.5740044