Discovery of Lipidome Alterations Following Traumatic Brain Injury via High-Resolution Metabolomics.

作者: Scott R. Hogan , John H. Phan , Melissa Alvarado-Velez , May Dongmei Wang , Ravi V. Bellamkonda

DOI: 10.1021/ACS.JPROTEOME.8B00068

关键词:

摘要: Traumatic brain injury (TBI) can occur across wide segments of the population, presenting in a heterogeneous manner that makes diagnosis inconsistent and management challenging. Biomarkers offer potential to objectively identify status, severity, phenotype by measuring relative concentrations endogenous molecules readily accessible biofluids. Through data-driven, discovery approach, novel biomarker candidates for TBI were identified serum lipidome adult male Sprague–Dawley rats first week following moderate controlled cortical impact (CCI). Serum samples analyzed positive negative modes ultraperformance liquid chromatography–mass spectrometry (UPLC–MS). A predictive panel classification injured uninjured sera samples, consisting 26 dysregulated species belonging variety lipid classes, was developed with cross-validated accuracy 85.3% using omniClassifier software optimize feature selection. Polyunsaturated fatty a...

参考文章(91)
U.-W. Thomale, K. Schaser, S.-N. Kroppenstedt, A. W. Unterberg, John F. Stover, Cortical Hypoperfusion Precedes Hyperperfusion Following Controlled Cortical Impact Injury Acta Neurochirurgica. ,vol. 81, pp. 229- 231 ,(2002) , 10.1007/978-3-7091-6738-0_59
G.V. Marinetti, J. Erbland, Elmer Stotz, Phosphatides of Pig Heart Cell Fractions Journal of Biological Chemistry. ,vol. 233, pp. 562- 565 ,(1958) , 10.1016/S0021-9258(18)64704-0
Zhiqun Zhang, Stephen F. Larner, Firas Kobeissy, Ronald L. Hayes, Kevin K. W. Wang, Systems biology and theranostic approach to drug discovery and development to treat traumatic brain injury. Methods of Molecular Biology. ,vol. 662, pp. 317- 329 ,(2010) , 10.1007/978-1-60761-800-3_16
P. Homayoun, N. E. Parkins, J. Soblosky, M. E. Carey, E. B. Rodriguez de Turco, N. G. Bazan, Cortical impact injury in rats promotes a rapid and sustained increase in polyunsaturated free fatty acids and diacylglycerols. Neurochemical Research. ,vol. 25, pp. 269- 276 ,(2000) , 10.1023/A:1007583806138
Sunil A. Sheth, Anthony T. Iavarone, David S. Liebeskind, Seok Joon Won, Raymond A. Swanson, Targeted Lipid Profiling Discovers Plasma Biomarkers of Acute Brain Injury. PLOS ONE. ,vol. 10, ,(2015) , 10.1371/JOURNAL.PONE.0129735
Andrew D. Kay, Stephen P. Day, Mary Kerr, James A.R. Nicoll, Chris J. Packard, Muriel J. Caslake, Remodeling of cerebrospinal fluid lipoprotein particles after human traumatic brain injury. Journal of Neurotrauma. ,vol. 20, pp. 717- 723 ,(2003) , 10.1089/089771503767869953
Vladimir A. Tyurin, Yulia Y. Tyurina, Grigory G. Borisenko, Tatiana V. Sokolova, Vladimir B. Ritov, Peter J. Quinn, Marie Rose, Patrick Kochanek, Steven H. Graham, Valerian E. Kagan, Oxidative stress following traumatic brain injury in rats: quantitation of biomarkers and detection of free radical intermediates. Journal of Neurochemistry. ,vol. 75, pp. 2178- 2189 ,(2002) , 10.1046/J.1471-4159.2000.0752178.X
Louis J. Sparvero, Andrew A. Amoscato, Patrick M. Kochanek, Bruce R. Pitt, Valerian E. Kagan, Hülya Bayır, Mass-spectrometry based oxidative lipidomics and lipid imaging: applications in traumatic brain injury. Journal of Neurochemistry. ,vol. 115, pp. 1322- 1336 ,(2010) , 10.1111/J.1471-4159.2010.07055.X
Thomas W. McAllister, Neurobiological consequences of traumatic brain injury Dialogues in clinical neuroscience. ,vol. 13, pp. 287- 300 ,(2011)