Determination of the Mahalanobis matrix using nonparametric noise estimations

作者: Amaury Lendasse , Nima Reyhani , Francesco Corona , Jin Hao , Michel Verleysen

DOI:

关键词:

摘要: In this paper, the problem of an optimal transformation input space for function approximation problems is addressed. The transformationis defined determining Mahalanobis matrix that minimizesthe variance noise. To compute noise, a nonparametricestimator called Delta Test paradigm used. proposed approachis illlustrated on two different benchmarks.

参考文章(5)
Rajesh Jugulum, Genichi Taguchi, The mahalanobis-taguchi strategy ,(2002)
Christopher M. Bishop, Neural networks for pattern recognition ,(1995)
Michel Verleysen, Damien François, The Curse of Dimensionality in Data Mining and Time Series Prediction Computational Intelligence and Bioinspired Systems. ,vol. 3512, pp. 758- 770 ,(2005) , 10.1007/11494669_93
Dafydd Evans, Antonia J. Jones, A proof of the Gamma test Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. ,vol. 458, pp. 2759- 2799 ,(2002) , 10.1098/RSPA.2002.1010