Maximum-entropy inference and inverse continuity of the numerical range

作者: Stephan Weis

DOI: 10.1016/S0034-4877(16)30022-2

关键词:

摘要: We study the continuity of maximum-entropy inference map for two observables in finite dimensions. prove that is equivalent to strong set-valued inverse numerical range map. This gives a condition terms analytic eigenvalue functions which implies discontinuities are very rare. It shows also MaxEnt method independent prior state.

参考文章(52)
Ingemar Bengtsson, Karol Zyczkowski, Geometry of Quantum States gqs. pp. 418- ,(2006) , 10.2277/0521814510
Roger A Horn, Topics in Matrix Analysis ,(2010)
Stephan Weis, Information topologies on non-commutative state spaces arXiv: Mathematical Physics. ,(2011)
Erik Magnus Alfsen, Frederic W. Shultz, State spaces of operator algebras : basic theory, orientations, and C*-products Springer Science+Business Media. ,(2001)
M. Ohya, R. S. Ingarden, A. Kossakowski, Information Dynamics and Open Systems: Classical and Quantum Approach ,(1997)
Brian Lins, Parth Parihar, Continuous selections of the inverse numerical range map Linear & Multilinear Algebra. ,vol. 64, pp. 87- 99 ,(2016) , 10.1080/03081087.2015.1043717
A. Uhlmann, The “transition probability” in the state space of a ∗-algebra Reports on Mathematical Physics. ,vol. 9, pp. 273- 279 ,(1976) , 10.1016/0034-4877(76)90060-4
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)
J. von Neumann, E. P. Wigner, Über das Verhalten von Eigenwerten bei adiabatischen Prozessen Nippon Sugaku-Buturigakkwaishi. ,vol. 3, pp. 239- 242 ,(1993) , 10.1007/978-3-662-02781-3_20