Information topologies on non-commutative state spaces

作者: Stephan Weis

DOI:

关键词:

摘要: We define an information topology (I-topology) and a reverse (rI-topology) on the state space of C*-subalgebra Mat(n,C) in terms sequential convergence with respect to relative entropy. Open disks entropy base for topology. This was not evident since Csiszar has shown 1960's that analogue is wrong probability measures countably infinite set. The I-topology strictly finer than norm topology, it disconnects convex into its faces. rI-topology intermediate allows complete two fundamental theorems geometry full space, by taking closure rI-topology. can be too coarse this aim but commutative algebras equals rI-topology, so difference belongs domain quantum theory. apply our results maximization von Neumann under linear constraints correlations.

参考文章(44)
S. Kullback, R. A. Leibler, On Information and Sufficiency Annals of Mathematical Statistics. ,vol. 22, pp. 79- 86 ,(1951) , 10.1214/AOMS/1177729694
Kavan Modi, Tomasz Paterek, Wonmin Son, Vlatko Vedral, Mark Williamson, Unified View of Quantum and Classical Correlations Physical Review Letters. ,vol. 104, pp. 080501- 080501 ,(2010) , 10.1103/PHYSREVLETT.104.080501
Dénes Petz, Geometry of canonical correlation on the state space of a quantum system Journal of Mathematical Physics. ,vol. 35, pp. 780- 795 ,(1994) , 10.1063/1.530611
Göran Lindblad, Entropy, information and quantum measurements Communications in Mathematical Physics. ,vol. 33, pp. 305- 322 ,(1973) , 10.1007/BF01646743
Stephan Weis, Andreas Knauf, Entropy distance: New quantum phenomena Journal of Mathematical Physics. ,vol. 53, pp. 102206- 102206 ,(2012) , 10.1063/1.4757652
Dénes Petz, Quasi-entropies for finite quantum systems Reports on Mathematical Physics. ,vol. 23, pp. 57- 65 ,(1986) , 10.1016/0034-4877(86)90067-4
Nihat Ay, AN INFORMATION-GEOMETRIC APPROACH TO A THEORY OF PRAGMATIC STRUCTURING Annals of Probability. ,vol. 30, pp. 416- 436 ,(2002) , 10.1214/AOP/1020107773
Eyvind H. Wichmann, Density Matrices Arising from Incomplete Measurements Journal of Mathematical Physics. ,vol. 4, pp. 884- 896 ,(1963) , 10.1063/1.1704014
Anna Jenčová, Geometry of quantum states: dual connections and divergence functions Reports on Mathematical Physics. ,vol. 47, pp. 121- 138 ,(2001) , 10.1016/S0034-4877(01)90008-4
E. T. Jaynes, Information Theory and Statistical Mechanics Physical Review. ,vol. 106, pp. 620- 630 ,(1957) , 10.1103/PHYSREV.106.620