Floating topological phases

作者: Trithep Devakul , S. L. Sondhi , S. A. Kivelson , Erez Berg

DOI: 10.1103/PHYSREVB.102.125136

关键词:

摘要: While quasi-two-dimensional (layered) materials can be highly anisotropic, their asymptotic long-distance behavior generally reflects the properties of a fully three dimensional phase matter. However, certain topologically ordered quantum phases asymptotically impervious to interplane couplings. Here, authors discuss stability such ``floating topological phases''. Such produce divergent ratio interlayer intralayer resistivity at low temperatures. Experimental observation divergence would constitute proof existence (e.g., spin liquid) phase.

参考文章(105)
Yochai Werman, Shubhayu Chatterjee, Erez Berg, Erez Berg, Siddhardh C. Morampudi, Signatures of Fractionalization in Spin Liquids from Interlayer Thermal Transport Physical Review X. ,vol. 8, pp. 031064- ,(2018) , 10.1103/PHYSREVX.8.031064
Shai M. Chester, Silviu Stefan Pufu, Anomalous dimensions of scalar operators in QED3 Journal of High Energy Physics. ,vol. 2016, pp. 69- ,(2016) , 10.1007/JHEP08(2016)069
G. Grissonnanche, A. Legros, S. Badoux, E. Lefrançois, V. Zatko, M. Lizaire, F. Laliberté, A. Gourgout, J.-S. Zhou, S. Pyon, T. Takayama, H. Takagi, S. Ono, N. Doiron-Leyraud, L. Taillefer, Giant thermal Hall conductivity from neutral excitations in the pseudogap phase of cuprates arXiv: Superconductivity. ,(2019) , 10.1038/S41586-019-1375-0
Kirill Shtengel, Chetan Nayak, Waheb Bishara, Claudio Chamon, No sliding in time arXiv: Strongly Correlated Electrons. ,(2005) , 10.1088/0305-4470/38/36/L01
S. Raghu, Gonzalo Torroba, Huajia Wang, Metallic quantum critical points with finite BCS couplings Physical Review B. ,vol. 92, pp. 205104- ,(2015) , 10.1103/PHYSREVB.92.205104
Ying Ran, Yi Zhang, Ashvin Vishwanath, One-dimensional topologically protected modes in topological insulators with lattice dislocations Nature Physics. ,vol. 5, pp. 298- 303 ,(2009) , 10.1038/NPHYS1220
Congjun Wu, Daniel Arovas, Hsiang-Hsuan Hung, Γ-matrix generalization of the Kitaev model Physical Review B. ,vol. 79, pp. 134427- ,(2009) , 10.1103/PHYSREVB.79.134427
Tai-Kai Ng, Patrick A. Lee, Power-Law Conductivity inside the Mott Gap: Application to κ−(BEDT−TTF) 2 Cu 2 (CN) 3 Physical Review Letters. ,vol. 99, pp. 156402- ,(2007) , 10.1103/PHYSREVLETT.99.156402