Gelation of siloxane-poly(oxypropylene) composites

作者: Victor H.V. Sarmento , Karim Dahmouche , Celso V. Santilli , Sandra H. Pulcinelli

DOI: 10.1016/S0022-3093(02)01015-3

关键词:

摘要: Abstract The viscoelastic properties of siloxane–poly(oxypropylene) (PPO) nanocomposites prepared by the sol–gel process has been analyzed during gelation dynamic rheological measurements. changes storage and loss moduli, complex viscosity phase angle measured as a function time showing newtonian sol in initial step gelation, its progressive transformation to gel. rheologic have correlated mass fractal, nearly linear growth models percolation theory. This study, completed quasi-elastic light scattering 29 Si solid state nuclear magnetic resonance measurements, shows that mechanisms siloxane–PPO hybrids depend on molecular weight polymer pH hybrid sol. For acid medium, polymerization involving silicon reactive species located at extremity chains presenting functionality f=2 occurs, forming fractal structure first stage transition. samples under neutral pH, is only observed for containing short (Mw∼130 g mol−1). dimensionality determined from change properties, indicates mechanism reaction-limited diffusion-limited aggregation when PPO increases 130 4000 g mol−1 catalyst conditions acidic neutral. Near gel point, these gels typical scaling behavior expected

参考文章(23)
C. Jeffrey Brinker, George W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing ,(1990)
S.J.L. Ribeiro, K. Dahmouche, C.A. Ribeiro, C.V. Santilli, S.H. Pulcinelli, Study of Hybrid Silica-Polyethyleneglycol Xerogels by Eu3+ Luminescence Spectroscopy Journal of Sol-Gel Science and Technology. ,vol. 13, pp. 427- 432 ,(1998) , 10.1023/A:1008673211834
M. E. Brik, J. J. Titman, J. P. Bayle, P. Judeinstein, Mapping of motional heterogeneity in organic‐inorganic nanocomposite gels Journal of Polymer Science Part B. ,vol. 34, pp. 2533- 2542 ,(1996) , 10.1002/(SICI)1099-0488(19961115)34:15<2533::AID-POLB1>3.0.CO;2-U
Edward J.A. Pope, J.D. Mackenzie, Theoretical modelling of the structural evolution of gels Journal of Non-crystalline Solids. ,vol. 101, pp. 198- 212 ,(1988) , 10.1016/0022-3093(88)90155-X
Jianye Wen, Garth L. Wilkes, Organic/Inorganic Hybrid Network Materials by the Sol−Gel Approach Chemistry of Materials. ,vol. 8, pp. 1667- 1681 ,(1996) , 10.1021/CM9601143
K. Dahmouche, C. V. Santilli, J. A. Chaker, S. H. Pulcinelli, A. F. Craievich, SAXS study of gelation, aging and drying of silica-polypropyleneglycol hybrid materials Japanese Journal of Applied Physics. ,vol. 38, pp. 172- 175 ,(1999) , 10.7567/JJAPS.38S1.172
Srinivasa R. Raghavan, H. J. Walls, Saad A. Khan, Rheology of Silica Dispersions in Organic Liquids: New Evidence for Solvation Forces Dictated by Hydrogen Bonding Langmuir. ,vol. 16, pp. 7920- 7930 ,(2000) , 10.1021/LA991548Q
P. Judeinstein, H. Schmidt, Polymetalates based organic-inorganic nanocomposites Journal of Sol-Gel Science and Technology. ,vol. 3, pp. 189- 197 ,(1994) , 10.1007/BF00486557
Max F. Bechtold, Robert D. Vest, Louis. Plambeck, Silicic acid from tetraethyl silicate hydrolysis. Polymerization and properties Journal of the American Chemical Society. ,vol. 90, pp. 4590- 4598 ,(1968) , 10.1021/JA01019A015
Francois Chambon, H. Henning Winter, Linear Viscoelasticity at the Gel Point of a Crosslinking PDMS with Imbalanced Stoichiometry Journal of Rheology. ,vol. 31, pp. 683- 697 ,(1987) , 10.1122/1.549955