Delay equation formulation for an epidemic model with waning immunity: an application to mycoplasma pneumoniae

作者: Yukihiko Nakata , Ryosuke Omori

DOI: 10.1016/J.IFACOL.2015.11.024

关键词:

摘要: Abstract We formulate a general epidemic model with two arbitrary probability distributions for describing durations of infectivity and immunity. The is given as coupled system delay differential equation renewal dynamical variables: susceptible population the force infection. It shown that there exists unique endemic equilibrium if basic reproduction number greater than one. Assuming fixed duration immunity we show becomes unstable via Hopf bifurcation. briefly discuss periodic outbreak mycoplasma pneumoniae may be interpreted result instability equilibrium.

参考文章(11)
Herbert W. Hethcote, Harlan W. Stech, P. Van Den Driessche, NONLINEAR OSCILLATIONS IN EPIDEMIC MODELS Siam Journal on Applied Mathematics. ,vol. 40, pp. 1- 9 ,(1981) , 10.1137/0140001
Yukihiko Nakata, Gergely Röst, Global analysis for spread of infectious diseases via transportation networks. Journal of Mathematical Biology. ,vol. 70, pp. 1411- 1456 ,(2015) , 10.1007/S00285-014-0801-Z
S. Gonçalves, M. F. C. Gomes, G. Abramson, Oscillations in SIRS model with distributed delays European Physical Journal B. ,vol. 81, pp. 363- 371 ,(2011) , 10.1140/EPJB/E2011-20054-9
Jaime Mena-Lorcat, HerbertW. Hethcote, Dynamic models of infectious diseases as regulators of population sizes. Journal of Mathematical Biology. ,vol. 30, pp. 693- 716 ,(1992) , 10.1007/BF00173264
Odo Diekmann, Mats Gyllenberg, Equations with infinite delay: blending the abstract and the concrete Journal of Differential Equations. ,vol. 252, pp. 819- 851 ,(2012) , 10.1016/J.JDE.2011.09.038
O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations Journal of Mathematical Biology. ,vol. 28, pp. 365- 382 ,(1990) , 10.1007/BF00178324
Yuliya N. Kyrychko, Konstantin B. Blyuss, Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate Nonlinear Analysis-real World Applications. ,vol. 6, pp. 495- 507 ,(2005) , 10.1016/J.NONRWA.2004.10.001
Patrick Nguipdop-Djomo, Paul EM Fine, Kate D Halsby, Victoria J Chalker, Emilia Vynnycky, None, Cyclic epidemics of Mycoplasma pneumoniae infections in England and Wales from 1975 to 2009: time-series analysis and mathematical modelling The Lancet. ,vol. 382, ,(2013) , 10.1016/S0140-6736(13)62503-9
O. Diekmann, J. A. J. Metz, How to lift a model for individual behaviour to the population level Philosophical Transactions of the Royal Society B. ,vol. 365, pp. 3523- 3530 ,(2010) , 10.1098/RSTB.2010.0100
W. A. Clyde, Clinical overview of typical Mycoplasma pneumoniae infections. Clinical Infectious Diseases. ,vol. 17, ,(1993)