Disconjugacy and the Secant Conjecture

作者: Alexandre Eremenko

DOI: 10.1007/S40598-015-0023-5

关键词:

摘要: We discuss the so-called secant conjecture in real algebraic geometry, and show that it follows from another interesting conjecture, about disconjugacy of vector spaces polynomials one variable.

参考文章(8)
A. Eremenko, A. Gabrielov, Elementary proof of the B. and M. Shapiro conjecture for rational functions arXiv: Algebraic Geometry. ,(2005)
A. Eremenko, A. Gabrielov, M. Shapiro, A. Vainshtein, Rational functions and real Schubert calculus Proceedings of the American Mathematical Society. ,vol. 134, pp. 949- 957 ,(2005) , 10.1090/S0002-9939-05-08048-2
Evgeny Mukhin, Vitaly Tarasov, Alexander Varchenko, The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz Annals of Mathematics. ,vol. 170, pp. 863- 881 ,(2009) , 10.4007/ANNALS.2009.170.863
A. Eremenko, A. Gabrielov, Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry Annals of Mathematics. ,vol. 155, pp. 105- 129 ,(2002) , 10.2307/3062151
Zach Teitler, Frank Sottile, Luis García-Puente, Abraham M. del Campo, James Ruffo, Stephen L. Johnson, Chris Hillar, Experimentation at the Frontiers of Reality in Schubert Calculus arXiv: Algebraic Geometry. ,vol. 517, ,(2009)
Luis D. García-Puente, Nickolas Hein, Christopher Hillar, Abraham Martín del Campo, James Ruffo, Frank Sottile, Zach Teitler, The Secant Conjecture in the Real Schubert Calculus Experimental Mathematics. ,vol. 21, pp. 252- 265 ,(2012) , 10.1080/10586458.2012.661323
Alexandre Eremenko, Andrei Gabrielov, An Elementary Proof of the B. and M. Shapiro Conjecture for Rational Functions Springer, Basel. pp. 167- 178 ,(2011) , 10.1007/978-3-0348-0142-3_10
E. MUKHIN, V. TARASOV, A. VARCHENKO, ON REALITY PROPERTY OF WRONSKI MAPS Confluentes Mathematici. ,vol. 01, pp. 225- 247 ,(2009) , 10.1142/S1793744209000092