The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz

作者: Evgeny Mukhin , Vitaly Tarasov , Alexander Varchenko

DOI: 10.4007/ANNALS.2009.170.863

关键词: Differential operatorMathematicsSchubert calculusAlgebraic geometryConjectureBethe ansatzPure mathematicsRiemann sphereReal algebraic geometryEuclidean spaceAlgebra

摘要: We prove the B. and M. Shapiro conjecture that if Wronskian of a set polynomials has real roots only, then complex span this basis consisting with coefficients. This, in particular, implies following result: If all ramification points parametrized rational curve φ: ℂℙ 1 → r lie on circle Riemann sphere , φ maps into suitable subspace ℝℙ ⊂ . The proof is based Bethe ansatz method Gaudin model. key observation symmetric linear operator Euclidean space spectrum. In Appendix A, we discuss properties differential operators associated vectors statement, which may be useful algebraic geometry; it claims certain Schubert cycles Grassmannian intersect transversally spectrum corresponding Hamiltonians simple. B, formulate reality orbits critical master functions for Lie algebras types A B C

参考文章(32)
T. Ekedahl, B. Shapiro, M. Shapiro, First Steps towards Total Reality of Meromorphic Functions Moscow Mathematical Journal. ,vol. 6, pp. 95- 106 ,(2006) , 10.17323/1609-4514-2006-6-1-95-106
A. Eremenko, A. Gabrielov, Elementary proof of the B. and M. Shapiro conjecture for rational functions arXiv: Algebraic Geometry. ,(2005)
P. P. Kulish, E. K. Sklyanin, Quantum spectral transform method recent developments Integrable Quantum Field Theories. ,vol. 151, pp. 61- 119 ,(1982) , 10.1007/3-540-11190-5_8
Frank Sottile, The special Schubert calculus is real Electronic Research Announcements of The American Mathematical Society. ,vol. 5, pp. 35- 39 ,(1999) , 10.1090/S1079-6762-99-00058-X
Frank Sottile, Enumerative geometry for the real Grassmannian of lines in projective space Duke Mathematical Journal. ,vol. 87, pp. 59- 85 ,(1997) , 10.1215/S0012-7094-97-08703-2
A. Eremenko, A. Gabrielov, M. Shapiro, A. Vainshtein, Rational functions and real Schubert calculus Proceedings of the American Mathematical Society. ,vol. 134, pp. 949- 957 ,(2005) , 10.1090/S0002-9939-05-08048-2
D. Talalaev, Quantization of the Gaudin System arXiv: High Energy Physics - Theory. ,(2004)
Atsushi Matsuo, An application of Aomoto-Gelfand hypergeometric functions to the SU(n) Knizhnik-Zamolodchikov equation Communications in Mathematical Physics. ,vol. 134, pp. 65- 77 ,(1990) , 10.1007/BF02102089