Bohr orbit theory revisited. II. Energies for 1S, 2P, 3D, and 4F states of helium

作者: Richard D. Harcourt

DOI: 10.1002/QUA.560310316

关键词:

摘要: A modified Bohr orbit procedure is used to calculate the energies for 1S ground state and 2P, 3D, 4F excited states of helium atom. The are calculated from , in which E(ϕ) energy angle ϕ between position vectors r1 r2, P(ϕ) a probability function this angle. Numerical procedures evaluate integrals. Energies that range −2.9082 −2.9054 au (cf. −2.9037 au, exact). −2.1318, −2.1240, −2.0562, −2.0555, −2.0314, −2.0312 generally close exact −2.1332, −2.1239, −2.0557, −2.0313, −2.0313 23P, 21P, 33D, 31D, 43F 41F states. Some relationships exist theory Schrodinger local discussed. Approximate estimates 2P He, Li+,…,Ne8+ reported. The invariance two-electron hamiltonian with respect interchange electron coordinates leads two classical functions when quantum numbers electrons differ.

参考文章(18)
Y. Accad, C. L. Pekeris, B. Schiff, S AND P STATES OF THE HELIUM ISOELECTRONIC SEQUENCE UP TO Z = 10. Physical Review A. ,vol. 4, pp. 516- 536 ,(1971) , 10.1103/PHYSREVA.4.516
Richard D. Harcourt, Helen Solomon, John Bechworth, Leigh Chislett, Bohr orbit model and Ruedenberg’s theory of the origin of the binding energy for H2 American Journal of Physics. ,vol. 50, pp. 557- 559 ,(1982) , 10.1119/1.12791
J G Leopold, I C Percival, The semiclassical two-electron atom and the old quantum theory Journal of Physics B. ,vol. 13, pp. 1037- 1047 ,(1980) , 10.1088/0022-3700/13/6/012
Gary Kemister, Sture Nordholm, A radially restricted Thomas–Fermi theory for atoms Journal of Chemical Physics. ,vol. 76, pp. 5043- 5050 ,(1982) , 10.1063/1.442852
Irving Langmuir, The Structure of the Helium Atom Physical Review. ,vol. 17, pp. 339- 353 ,(1921) , 10.1103/PHYSREV.17.339
Russell J. Boyd, A quantum mechanical explanation for Hund's multiplicity rule Nature. ,vol. 310, pp. 480- 481 ,(1984) , 10.1038/310480A0
G.E. Wesenberg, D.W. Noid, J.B. Delos, Re-examination of an early model of two-electron atoms Chemical Physics Letters. ,vol. 118, pp. 72- 76 ,(1985) , 10.1016/0009-2614(85)85269-6