A radially restricted Thomas–Fermi theory for atoms

作者: Gary Kemister , Sture Nordholm

DOI: 10.1063/1.442852

关键词:

摘要: A new approach to the correction of inaccuracies Thomas–Fermi theory as applied atoms is developed, in which exact angular part energy eigenfunctions are accepted and statistical treatment restricted radial motion. The Langer used represent quantum depletion electron density close nucleus. Orbital eigenvalues assigned by a quantization scheme produces energies for noninteracting electrons. Self‐interaction spin polarization allowed for. predicted total correct about 4% first 20 atoms. Ionization densities also discussed.

参考文章(19)
John Clarke Slater, The self-consistent field for molecules and solids McGraw-Hill. ,(1974)
P. Gombäs, Die statistische Theorie des Atoms und ihre Anwendungen Zeitschrift für Naturforschung A. ,vol. 5, pp. 235- 236 ,(1949) , 10.1515/ZNA-1950-0412
Jacek Karwowski, K. M. S. Saxena, S. Fraga, Handbook of atomic data ,(1976)
John C. Slater, William F. Meggers, Quantum Theory of Atomic Structure ,(1960)
D. R. Hartree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 24, pp. 111- 132 ,(1928) , 10.1017/S0305004100011920
Wen-Ping Wang, Robert G. Parr, Statistical atomic models with piecewise exponentially decaying electron densities Physical Review A. ,vol. 16, pp. 891- 902 ,(1977) , 10.1103/PHYSREVA.16.891
M. S. Gopinathan, Improved approximate representation of the Hartree-Fock potential in atoms Physical Review A. ,vol. 15, pp. 2135- 2142 ,(1977) , 10.1103/PHYSREVA.15.2135