Interaction energies between noble gas atoms from a trial density function in the Thomas–Fermi–Amaldi–Dirac formulation

作者: Marǐa C. Donnamarǐa , E. A. Castro , F. M. Fernández

DOI: 10.1063/1.446848

关键词:

摘要: The Thomas–Fermi–Amaldi–Dirac density functional theory is applied to calculate interaction energies for noble gas atoms and atomic ionization energies. Our results are compared with other theoretical values as well available experimental data.

参考文章(22)
Jacek Karwowski, K. M. S. Saxena, S. Fraga, Handbook of atomic data ,(1976)
Mu-Shiang Wu, Modified variational solution of the Thomas-Fermi equation for atoms Physical Review A. ,vol. 26, pp. 57- 61 ,(1982) , 10.1103/PHYSREVA.26.57
T. L. Gilbert, Arnold C. Wahl, Single‐Configuration Wavefunctions and Potential Curves for the Ground States of He2, Ne2, and Ar2 Journal of Chemical Physics. ,vol. 47, pp. 3425- 3438 ,(1967) , 10.1063/1.1712408
Gary Kemister, Sture Nordholm, A radially restricted Thomas–Fermi theory for atoms Journal of Chemical Physics. ,vol. 76, pp. 5043- 5050 ,(1982) , 10.1063/1.442852
Maria C Donnamaria, Eduardo A Castro, Francisco M Fernández, None, Atomic diamagnetic susceptibilities from the statistical Thomas-Fermi-Amaldi theory Pramana. ,vol. 19, pp. 431- 434 ,(1982) , 10.1007/BF02847376
R. G. Lerner, G. L. Trigg, Robert T. Beyer, Encyclopedia of Physics ,(1990)
Willard R. Wadt, The electronic states of Ar+2, Kr+2, Xe+2. I. Potential curves with and without spin–orbit coupling The Journal of Chemical Physics. ,vol. 68, pp. 402- 414 ,(1978) , 10.1063/1.435773
P. Csavinszky, Note on the Fermi–Amaldi correction for the Thomas–Fermi theory of atoms International Journal of Quantum Chemistry. ,vol. 15, pp. 511- 515 ,(1979) , 10.1002/QUA.560150507