Second Microlocalization and Propagation of Singularities for Semi-Linear Hyperbolic Equations

作者: Jean-Michel BONY

DOI: 10.1016/B978-0-12-501658-2.50006-3

关键词:

摘要: Publisher Summary This chapter presents second microlocalization and discusses the propagation of singularities for semi-linear hyperbolic equations. Fourier integral operators prove that can be made along any Lagrangean submanifold. Using invariance by operators, it is not difficult to define classes mapping. Usual singular diffeomorphisms are particular cases a much larger class transformations. They well-behaved with respect 2-microlocal calculus. usual various operators.

参考文章(6)
Jean-Michel Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires Annales Scientifiques De L Ecole Normale Superieure. ,vol. 14, pp. 209- 246 ,(1981) , 10.24033/ASENS.1404
Jeffrey Rauch, Michael C. Reed, Singularities produced by the nonlinear interaction of three progressing waves;,examples Communications in Partial Differential Equations. ,vol. 7, pp. 1117- 1133 ,(1982) , 10.1080/03605308208820246
J. M. Bony, Propagation des singularités pour les équations aux dérivées partielles non linéaires Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz". pp. 1- 11 ,(1980)
Michael Beals, Self-Spreading and Strength of Singularities for Solutions to Semilinear Wave Equations The Annals of Mathematics. ,vol. 118, pp. 187- 214 ,(1983) , 10.2307/2006959
J. M. Bony, Interaction des singularités pour les équations de Klein-Gordon non linéaires Séminaire Équations aux dérivées partielles (Polytechnique). pp. 1- 27 ,(1984)