2-Microlocal Besov Spaces

作者: Henning Kempka

DOI: 10.1007/978-0-8176-4888-6_12

关键词:

摘要: We introduce 2-microlocal Besov spaces which generalize the \({C}_{{x}_{0}}^{s,s^{\prime}}(\mathbb{R}n)\) by Bony. give a unified Fourier-analytic approach to define generalized and we present wavelet characterization for them. Wavelets provide powerful tool studying global local regularity properties of functions. Further, prove with wavelets version first connections generalizations theory.

参考文章(25)
Jean-Michel BONY, Second Microlocalization and Propagation of Singularities for Semi-Linear Hyperbolic Equations Hyperbolic Equations and Related Topics#R##N#Proceedings of the Taniguchi International Symposium, Katata and Kyoto, 1984. pp. 11- 49 ,(1986) , 10.1016/B978-0-12-501658-2.50006-3
Hans Triebel, Theory of Function Spaces III ,(2008)
Hans-Jürgen Schmeisser, Hans Triebel, Topics in Fourier Analysis and Function Spaces ,(1987)
Jaak Peetre, New thoughts on Besov spaces Mathematics Dept., Duke University. ,(1976)
David Eric Edmunds, Hans Triebel, Function Spaces, Entropy Numbers, Differential Operators ,(1996)
Hans Triebel, Theory of function spaces ,(1983)
Susana Domingues de Moura, Function spaces of generalised smoothness Dissertationes Mathematicae. ,vol. 398, pp. 1- 88 ,(2001) , 10.4064/DM398-0-1