Using the residual bootstrap to quantify uncertainty in mean apparent propagator MRI

作者: Xuan Gu , Anders Eklund , Evren Özarslan , Hans Knutsson

DOI: 10.1101/295667

关键词:

摘要: Abstract Estimation of noise-induced variability in MAP-MRI is needed to properly characterize the amount uncertainty quantities derived from estimated coefficients. Bootstrap metrics, such as standard deviation, provides additional valuable diffusion information addition common parameters, and can be incorporated studies provide more extensive insight. To best our knowledge, this first paper study metrics. The noise have been quantified using residual bootstrap, which residuals are resampled two sampling schemes. bootstrap method empirical distributions for quantities, even when exact not easily derived. methods applied SPARC data HCP-MGH data, obtained zero-displacement probabilities. Here, we compare contrast schemes all shells within same shell. We show that resampling each shell generates larger than data. Standard deviation quartile coefficient maps provided.

参考文章(32)
Setsu Wakana, Lidia M. Nagae-Poetscher, Peter C. M. Van Zijl, Barbara J. Crain, MRI Atlas of Human White Matter ,(2005)
Robert Mcgill, John W. Tukey, Wayne A. Larsen, Variations of Box Plots The American Statistician. ,vol. 32, pp. 12- 16 ,(1978) , 10.1080/00031305.1978.10479236
PG Batchelor, D Atkinson, DLG Hill, F Calamante, A Connelly, None, Anisotropic noise propagation in diffusion tensor MRI sampling schemes. Magnetic Resonance in Medicine. ,vol. 49, pp. 1143- 1151 ,(2003) , 10.1002/MRM.10491
Matthew F. Glasser, Stamatios N. Sotiropoulos, J. Anthony Wilson, Timothy S. Coalson, Bruce Fischl, Jesper L. Andersson, Junqian Xu, Saad Jbabdi, Matthew Webster, Jonathan R. Polimeni, David C. Van Essen, Mark Jenkinson, The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage. ,vol. 80, pp. 105- 124 ,(2013) , 10.1016/J.NEUROIMAGE.2013.04.127
L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory programming computational science and engineering. ,vol. 5, pp. 46- 55 ,(1998) , 10.1109/99.660313
Robert S. Vorburger, Carolin Reischauer, Katerina Dikaiou, Peter Boesiger, In vivo precision of bootstrap algorithms applied to diffusion tensor imaging data Journal of Magnetic Resonance Imaging. ,vol. 36, pp. 979- 986 ,(2012) , 10.1002/JMRI.23733
Martha Elizabeth Shenton, HM Hamoda, JS Schneiderman, Sylvain Bouix, Ofer Pasternak, Yogesh Rathi, M-A Vu, Maulik Prafull Purohit, K Helmer, I Koerte, Alexander Peter Lin, C-F Westin, Ron Kikinis, M Kubicki, RA Stern, R Zafonte, None, A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury Brain Imaging and Behavior. ,vol. 6, pp. 137- 192 ,(2012) , 10.1007/S11682-012-9156-5
Cyrus Eierud, R. Cameron Craddock, Sean Fletcher, Manek Aulakh, Brooks King-Casas, Damon Kuehl, Stephen M. LaConte, Neuroimaging after mild traumatic brain injury: Review and meta-analysis NeuroImage: Clinical. ,vol. 4, pp. 283- 294 ,(2014) , 10.1016/J.NICL.2013.12.009
P.J. Basser, J. Mattiello, D. Lebihan, Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo Journal of Magnetic Resonance, Series B. ,vol. 103, pp. 247- 254 ,(1994) , 10.1006/JMRB.1994.1037
David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy EJ Behrens, Essa Yacoub, Kamil Ugurbil, Wu-Minn HCP Consortium, None, The WU-Minn Human Connectome Project: An Overview NeuroImage. ,vol. 80, pp. 62- 79 ,(2013) , 10.1016/J.NEUROIMAGE.2013.05.041