Identifying personal health experience tweets with deep neural networks

作者: Keyuan Jiang , Ravish Gupta , Matrika Gupta , Ricardo A. Calix , Gordon R. Bernard

DOI: 10.1109/EMBC.2017.8037039

关键词:

摘要: Twitter, as a social media platform, has become an increasingly useful data source for health surveillance studies, and personal experiences shared on Twitter provide valuable information to the surveillance. are known their irregular usages of languages informal short texts due 140 character limit, noisiness such that majority posts irrelevant any particular These factors pose challenges in identifying experience tweets from data. In this study, we designed deep neural networks with 3 different architectural configurations, after training them corpus 8,770 annotated tweets, used predict set 821 annotate tweets. Our results demonstrated significant amount improvement predicting by over conventional classifiers: 37.5% accuracy, 31.1% precision, 53.6% recall. We believe our method can be utilized various studies using source.

参考文章(29)
Keyuan Jiang, Yujing Zheng, Mining Twitter Data for Potential Drug Effects advanced data mining and applications. pp. 434- 443 ,(2013) , 10.1007/978-3-642-53914-5_37
Michelle Odlum, Sunmoo Yoon, What can we learn about the Ebola outbreak from tweets American Journal of Infection Control. ,vol. 43, pp. 563- 571 ,(2015) , 10.1016/J.AJIC.2015.02.023
Francesco Gesualdo, Giovanni Stilo, Angelo D’Ambrosio, Emanuela Carloni, Elisabetta Pandolfi, Paola Velardi, Alessandro Fiocchi, Alberto E. Tozzi, Can Twitter Be a Source of Information on Allergy? Correlation of Pollen Counts with Tweets Reporting Symptoms of Allergic Rhinoconjunctivitis and Names of Antihistamine Drugs PLOS ONE. ,vol. 10, pp. e0133706- 11 ,(2015) , 10.1371/JOURNAL.PONE.0133706
Rachel L. Goldfeder, Kimberly McManus, Winston A. Haynes, Emily K. Mallory, Jonathan D. Tatum, Mining Twitter Data to Improve Detection of Schizophrenia. AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science. ,vol. 2015, pp. 122- 126 ,(2015)
Preciosa M. Coloma, Benedikt Becker, Miriam C. J. M. Sturkenboom, Erik M. van Mulligen, Jan A. Kors, Evaluating Social Media Networks in Medicines Safety Surveillance: Two Case Studies Drug Safety. ,vol. 38, pp. 921- 930 ,(2015) , 10.1007/S40264-015-0333-5
Carl L Hanson, Scott H Burton, Christophe Giraud-Carrier, Josh H West, Michael D Barnes, Bret Hansen, Tweaking and Tweeting: Exploring Twitter for Nonmedical Use of a Psychostimulant Drug (Adderall) Among College Students Journal of Medical Internet Research. ,vol. 15, ,(2013) , 10.2196/JMIR.2503
Jared Jashinsky, Scott H. Burton, Carl L. Hanson, Josh West, Christophe Giraud-Carrier, Michael D. Barnes, Trenton Argyle, Tracking Suicide Risk Factors Through Twitter in the US Crisis-the Journal of Crisis Intervention and Suicide Prevention. ,vol. 35, pp. 51- 59 ,(2014) , 10.1027/0227-5910/A000234
N. Heaivilin, B. Gerbert, J.E. Page, J.L. Gibbs, Public health surveillance of dental pain via Twitter. Journal of Dental Research. ,vol. 90, pp. 1047- 1051 ,(2011) , 10.1177/0022034511415273
David A. Broniatowski, Michael J. Paul, Mark Dredze, National and Local Influenza Surveillance through Twitter: An Analysis of the 2012-2013 Influenza Epidemic PLoS ONE. ,vol. 8, pp. e83672- ,(2013) , 10.1371/JOURNAL.PONE.0083672