TORSION POINTS ON CURVES

作者: Andrew Granville , Zeév Rudnick

DOI: 10.1007/978-1-4020-5404-4_5

关键词:

摘要: EXAMPLES. (i) The multiplicative group A = Gm is the algebraic whose points over a field are nonzero elements of field. Then for any K, Tor Gm(K) roots unity contained in K. (ii) × then Tor(A) Tor(Gm) {(x, y) : x, y ∈ K unity}. (iii) Let be an elliptic curve. Over complex numbers we can uniformize as C/L where L lattice. Tor(A(C)) Q ⊗ L/L.

参考文章(7)
John Conway, A. Jones, Trigonometric diophantine equations (On vanishing sums of roots of unity) Acta Arithmetica. ,vol. 30, pp. 229- 240 ,(1976) , 10.4064/AA-30-3-229-240
H.W. Lenstra, Vanishing sums of roots of unity Proceedings bicentennial congress Wiskundig Genootschap, Math. Centre Tracts 100 /101, Mathematisch Centrum Amsterdam, 249 - 268 (1979). pp. 249- 268 ,(1979)
Andreas Strömbergsson, Akshay Venkatesh, Small solutions to linear congruences and Hecke equidistribution Acta Arithmetica. ,vol. 118, pp. 41- 78 ,(2005) , 10.4064/AA118-1-4
Serge Lang, Division points on curves Annali di Matematica Pura ed Applicata. ,vol. 70, pp. 229- 234 ,(1965) , 10.1007/BF02410091
Pavlos Tzermias, THE MANIN–MUMFORD CONJECTURE: A BRIEF SURVEY Bulletin of The London Mathematical Society. ,vol. 32, pp. 641- 652 ,(2000) , 10.1112/S0024609300007578