THE MANIN–MUMFORD CONJECTURE: A BRIEF SURVEY

作者: Pavlos Tzermias

DOI: 10.1112/S0024609300007578

关键词:

摘要: The Manin-Mumford conjecture for number fields is a deep and important finiteness question (raised independently by Manin Mumford) regarding the intersection of curve with torsion subgroup its Jacobian: Conjecture 1.1. Let K be field. C genus g ≥ 2 defined over K. We will denote J Jacobian C. Fix an embedding ↪→ Then set C(K) ∩ J(K)tors finite.

参考文章(52)
Robert F. Coleman, Torsion points on fermat curves Compositio Mathematica. ,vol. 58, pp. 191- 208 ,(1986)
Ralph Greenberg, On the jacobian variety of some algebraic curves Compositio Mathematica. ,vol. 42, pp. 345- 359 ,(1980)
Michel Raynaud, Sous-variétés d’une variété abélienne et points de torsion Arithmetic and Geometry. pp. 327- 352 ,(1983) , 10.1007/978-1-4757-9284-3_14
Kenneth A. Ribet, Torsion points on J0(N) and Galois representations Springer, Berlin, Heidelberg. pp. 145- 166 ,(1999) , 10.1007/BFB0093454
Fedor Bogomolov, Points of finite order on abelian varieties Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya. ,vol. 44, ,(1980)
Masato Kurihara, Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbf {Z}$ Compositio Mathematica. ,vol. 81, pp. 223- 236 ,(1992)
José Felipe Voloch, Torsion points on y^2=x^6+1 arXiv: Number Theory. ,(1997)
J. W. S. Cassels, E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2 Cambridge University Press. ,(1996) , 10.1017/CBO9780511526084
John Boxall, David Grant, Examples of torsion points on genus two curves Transactions of the American Mathematical Society. ,vol. 352, pp. 4533- 4555 ,(2000) , 10.1090/S0002-9947-00-02368-0