Approximate Bayesian Computation based on Progressive Correction of Gaussian Components

作者: Jiting Xu , Gabriel Terejanu

DOI: 10.1109/ACC.2014.6859193

关键词:

摘要: This paper presents the development of a new numerical algorithm for statistical inference problems that require sampling from distributions which are intractable. We propose to develop our based on class Monte Carlo methods, Approximate Bayesian Computation (ABC), specifically designed deal with this type likelihood-free inference. ABC has become fundamental tool analysis complex models when likelihood function is computationally intractable or challenging mathematically specify. The central theme approach enhance current algorithms by exploiting structure mathematical via derivative information. introduce Progressive Correction Gaussian Components (PCGC) as efficient generating proposal in sampler. demonstrate two examples an acceptance rate one orders magnitude better than basic rejection sampling.

参考文章(22)
David J Balding, Simon Tavare, Peter Donnelly, Robert C Griffiths, Inferring Coalescence Times From DNA Sequence Data Genetics. ,vol. 145, pp. 505- 518 ,(1997) , 10.1093/GENETICS/145.2.505
Mark M. Tanaka, Andrew R. Francis, Fabio Luciani, S. A. Sisson, Using Approximate Bayesian Computation to Estimate Tuberculosis Transmission Parameters From Genotype Data Genetics. ,vol. 173, pp. 1511- 1520 ,(2006) , 10.1534/GENETICS.106.055574
Gabriel Terejanu, Puneet Singla, Tarunraj Singh, Peter D. Scott, Uncertainty Propagation for Nonlinear Dynamic Systems Using Gaussian Mixture Models Journal of Guidance, Control, and Dynamics. ,vol. 31, pp. 1623- 1633 ,(2008) , 10.2514/1.36247
K. V. Umamaheswara Reddy, Yang Cheng, Tarunraj Singh, Peter D. Scott, Data assimilation in variable dimension dispersion models using particle filters international conference on information fusion. pp. 1- 8 ,(2007) , 10.1109/ICIF.2007.4408071
Kimberly D. Siegmund, Paul Marjoram, Darryl Shibata, Modeling DNA Methylation in a Population of Cancer Cells Statistical Applications in Genetics and Molecular Biology. ,vol. 7, pp. 1- 23 ,(2008) , 10.2202/1544-6115.1374
Grant Hamilton, Mathias Currat, Nicolas Ray, Gerald Heckel, Mark Beaumont, Laurent Excoffier, Bayesian estimation of recent migration rates after a spatial expansion Genetics. ,vol. 170, pp. 409- 417 ,(2005) , 10.1534/GENETICS.104.034199
Mikael Sunnåker, Alberto Giovanni Busetto, Elina Numminen, Jukka Corander, Matthieu Foll, Christophe Dessimoz, Approximate Bayesian Computation PLoS Computational Biology. ,vol. 9, pp. e1002803- ,(2013) , 10.1371/JOURNAL.PCBI.1002803
J. K. Pritchard, M. T. Seielstad, A. Perez-Lezaun, M. W. Feldman, Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Molecular Biology and Evolution. ,vol. 16, pp. 1791- 1798 ,(1999) , 10.1093/OXFORDJOURNALS.MOLBEV.A026091
P. Marjoram, J. Molitor, V. Plagnol, S. Tavare, Markov chain Monte Carlo without likelihoods Proceedings of the National Academy of Sciences of the United States of America. ,vol. 100, pp. 15324- 15328 ,(2003) , 10.1073/PNAS.0306899100