Composition Algebras of Affine Type

作者: Pu Zhang

DOI: 10.1006/JABR.1998.7447

关键词:

摘要: Abstract The aim of this paper is to study the structure composition algebras affine type. It turns out that they have a triangular decomposition P  ⊗  T I corresponding division indecomposables into preprojectives, regulars, and preinjectives. By recent Ringel–Green theorem algebra can be twisted in order obtain positive partU + of Drinfeld–Jimbo quantized enveloping algebraU = U −  ⊗ U0 ⊗ U + of Kac–Moody algebra, one obtains forU + , particular, natural basis ofU + in terms ofA-representations.

参考文章(23)
Claus Michael Ringel, Hall algebras revisited ,(1992)
Claus Michael Ringel, PBW-bases of quantum groups. Crelle's Journal. ,vol. 470, pp. 51- 88 ,(1996)
Claus Michael Ringel, Lie algebras (arising in representation theory) Representations of Algebras and Related Topics. ,vol. 168, pp. 248- 291 ,(1992) , 10.1017/CBO9780511661853.010
Claus Michael Ringel, From representations of quivers via Hall and Loewy algebras to quantum groups Proceedings of the International Conference on Algebra Dedicated to the Memory of A. I. Malcev ; 2: Mezdunarodnaja Konferencija po Algebre,1, 1989, Novosibirsk. ,vol. 131, ,(1992)
George Lusztig, Introduction to Quantum Groups ,(1993)
Claus Michael Ringel, Tame Algebras and Integral Quadratic Forms ,(1984)
James A. Green, Quantum groups, Hall algebras and quantized shuffles Proceedings of an international conference on Finite reductive groups : related structures and representations: related structures and representations. pp. 273- 290 ,(1997) , 10.1007/978-1-4612-4124-9_10
James A. Green, Hall algebras, hereditary algebras and quantum groups. Inventiones Mathematicae. ,vol. 120, pp. 361- 377 ,(1995) , 10.1007/BF01241133
Claus Michael Ringel, Hall algebras and quantum groups Inventiones Mathematicae. ,vol. 101, pp. 583- 591 ,(1990) , 10.1007/BF01231516