Representations as elements in affine composition algebras

作者: Pu Zhang

DOI: 10.1090/S0002-9947-00-02613-1

关键词:

摘要: Let A be the path algebra of a Euclidean quiver over finite field k. The aim this paper is to classify modules M with property [M ] ∈ C(A), where C(A) Ringel’s composition algebra. Namely, main result says that if |k| 6= 2, 3, then and only regular direct summand sum from non-homogeneous tubes quasi-dimension vectors non-sincere. methods are representation theory affine quivers, structure triangular decompositions tame algebras, invariant subspaces skew derivations. As an application, we see = H(A) Dynkin type.

参考文章(37)
Claus Michael Ringel, The braid group action on the set of exceptional sequences of a hereditary artin algebra Abelian group theory and related topics: Conference on Abelian Groups, August 1 - 7, 1993, Oberwolfach, Germany. ,(1994)
Claus Michael Ringel, Hall algebras revisited ,(1992)
Claus Michael Ringel, PBW-bases of quantum groups. Crelle's Journal. ,vol. 470, pp. 51- 88 ,(1996)
Claus Michael Ringel, Lie algebras (arising in representation theory) Representations of Algebras and Related Topics. ,vol. 168, pp. 248- 291 ,(1992) , 10.1017/CBO9780511661853.010
Claus Michael Ringel, From representations of quivers via Hall and Loewy algebras to quantum groups Proceedings of the International Conference on Algebra Dedicated to the Memory of A. I. Malcev ; 2: Mezdunarodnaja Konferencija po Algebre,1, 1989, Novosibirsk. ,vol. 131, ,(1992)
Xueqing Chen, Jie Xiao, Exceptional Sequences in Hall Algebras and Quantum Groups Compositio Mathematica. ,vol. 117, pp. 161- 187 ,(1999) , 10.1023/A:1000947529874
George Lusztig, Introduction to Quantum Groups ,(1993)
Claus Michael Ringel, Tame Algebras and Integral Quadratic Forms ,(1984)
Victor G. Kac, Infinite-Dimensional Lie Algebras idla. pp. 422- ,(1990) , 10.1017/CBO9780511626234