Exceptional Sequences in Hall Algebras and Quantum Groups

作者: Xueqing Chen , Jie Xiao

DOI: 10.1023/A:1000947529874

关键词:

摘要: Let Λ be a finite-dimensional hereditary algebra over finite field k, \({\mathcal{H}}\)(Λ) and \({\mathcal{C}}\) (Λ) be, respectively, the Hall composition of Λ, \({\mathcal{P}}\) isomorphism classes dimensional Λ-modules I simple Λ-modules. We define δα α δ, in \({\mathcal{P}}\), to right left derivations respectively. By using these action braid group on set exceptional sequences Λ-mod, we provide an effective algorithm calculating root vectors real Schur roots. This means that get inductive method express uλ as combinations elements ui algebra, where i ∈ λ is any Λ-module. Because canonical between Drinfeld–Jimbo quantum generic our applicable directly groups. In particular, all are obtained this way type cases.

参考文章(13)
Claus Michael Ringel, The braid group action on the set of exceptional sequences of a hereditary artin algebra Abelian group theory and related topics: Conference on Abelian Groups, August 1 - 7, 1993, Oberwolfach, Germany. ,(1994)
Claus Michael Ringel, PBW-bases of quantum groups. Crelle's Journal. ,vol. 470, pp. 51- 88 ,(1996)
George Lusztig, Introduction to Quantum Groups ,(1993)
James A. Green, Hall algebras, hereditary algebras and quantum groups. Inventiones Mathematicae. ,vol. 120, pp. 361- 377 ,(1995) , 10.1007/BF01241133
Claus Michael Ringel, Hall algebras and quantum groups Inventiones Mathematicae. ,vol. 101, pp. 583- 591 ,(1990) , 10.1007/BF01231516
C. Riedtmann, Lie Algebras Generated by Indecomposables Journal of Algebra. ,vol. 170, pp. 526- 546 ,(1994) , 10.1006/JABR.1994.1351
Claus Michael Ringel, Representations of K-species and bimodules Journal of Algebra. ,vol. 41, pp. 269- 302 ,(1976) , 10.1016/0021-8693(76)90184-8
Nanhua Xi, Root vectors in quantum groups Commentarii Mathematici Helvetici. ,vol. 69, pp. 612- 639 ,(1994) , 10.1007/BF02564506