Optimal location of the support of the control for the 1-D wave equation: numerical investigations

作者: Arnaud Münch , None

DOI: 10.1007/S10589-007-9133-X

关键词:

摘要: We consider in this paper the homogeneous 1-D wave equation defined on ???. Using Hilbert Uniqueness Method, one may define, for each subset ???, exact control v ? of minimal L 2(?×(0,T))-norm which drives to rest system at a time T>0 large enough. address question optimal position minimizes functional $J:\omega \rightarrow \|v_{\omega}\|_{L^{2}(\omega \times (0,T))}$ . express shape derivative J as an integral ?×(0,T) independently any adjoint solution. This expression leads descent direction and permits define gradient algorithm efficiently initialized by topological associated with J. The numerical approximation problem is discussed experiments are presented framework level set approach. also investigate well-posedness considering relaxed formulation.

参考文章(22)
Antoine Henrot, Michel Pierre, Variation et optimisation de formes Springer Berlin Heidelberg. pp. 333- ,(2005) , 10.1007/3-540-37689-5
Michel Pierre, Antoine Henrot, Variation et optimisation de formes : une analyse géométrique Springer. ,(2005)
C. Castro, S. Micu, A. Munch, Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square Ima Journal of Numerical Analysis. ,vol. 28, pp. 186- 214 ,(2007) , 10.1093/IMANUM/DRM012
John Cagnol, Jean-Paul Zolésio, Shape Derivative in the Wave Equation with Dirichlet Boundary Conditions Journal of Differential Equations. ,vol. 158, pp. 175- 210 ,(1999) , 10.1006/JDEQ.1999.3643
J. Sokolowski, A. Zochowski, On the Topological Derivative in Shape Optimization Siam Journal on Control and Optimization. ,vol. 37, pp. 1251- 1272 ,(1999) , 10.1137/S0363012997323230
Arnaud Münch, None, A uniformly controllable and implicit scheme for the 1-D wave equation Mathematical Modelling and Numerical Analysis. ,vol. 39, pp. 377- 418 ,(2005) , 10.1051/M2AN:2005012
Grégoire Allaire, François Jouve, Anca-Maria Toader, Structural optimization using sensitivity analysis and a level-set method Journal of Computational Physics. ,vol. 194, pp. 363- 393 ,(2004) , 10.1016/J.JCP.2003.09.032
MARTIN BURGER, STANLEY J. OSHER, A survey on level set methods for inverse problems and optimal design European Journal of Applied Mathematics. ,vol. 16, pp. 263- 301 ,(2005) , 10.1017/S0956792505006182