Geometric Complexity Theory IV: quantum group for the Kronecker problem

作者: Ketan Mulmuley , Milind A. Sohoni

DOI:

关键词:

摘要:

参考文章(17)
Masatoshi NOUMI, Hirofumi YAMADA, Katsuhisa MIMACHI, Finite dimensional representations of the quantum group GL_q(n;C) and the zonal spherical functions on U_q(n-1)\U_q(n) Japanese journal of mathematics. New series. ,vol. 19, pp. 31- 80 ,(1993) , 10.4099/MATH1924.19.31
George Lusztig, Introduction to Quantum Groups ,(1993)
Konrad Schmüdgen, Anatoli Klimyk, Quantum Groups and Their Representations ,(2011)
David Kazhdan, George Lusztig, Representations of Coxeter Groups and Hecke Algebras. Inventiones Mathematicae. ,vol. 53, pp. 165- 184 ,(1979) , 10.1007/BF01390031
M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras Duke Mathematical Journal. ,vol. 63, pp. 465- 516 ,(1991) , 10.1215/S0012-7094-91-06321-0
Ketan D. Mulmuley, Milind Sohoni, Geometric Complexity Theory II: Towards Explicit Obstructions for Embeddings among Class Varieties SIAM Journal on Computing. ,vol. 38, pp. 1175- 1206 ,(2008) , 10.1137/080718115
Masaki Kashiwara, Global crystal bases of quantum groups Duke Mathematical Journal. ,vol. 69, pp. 455- 485 ,(1993) , 10.1215/S0012-7094-93-06920-7
A. U. Klimyk, N. Ya. Vilenkin, Representation of Lie groups and special functions ,(1991)
S. L. Woronowicz, Compact matrix pseudogroups Communications in Mathematical Physics. ,vol. 111, pp. 613- 665 ,(1987) , 10.1007/BF01219077
G. Lusztig, Canonical bases in tensor products. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 89, pp. 8177- 8179 ,(1992) , 10.1073/PNAS.89.17.8177